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Abstract

The value of Global Navigation Satellite Systems (GNSS) in a multitude of both

military and civilian navigation and timing applications has been indisputably shown over

the last twenty plus years. Increased dependence on GNSS has driven the need for risk

management in using these systems for critical operations. One example risk reduction

is through use of an integrity monitoring process, a process which predicts the impact

of a worst case or minimal detectable bias error on the navigation position error. The

navigation community has spent nearly two decades in development of GNSS integrity

algorithms and continues to refine methodologies and investigate new approaches. As a

result, the concept of integrity has been formalized for GPS to encompass fundamental

criteria, including the ability to detect measurement errors and notify the user when the

system should not be used because of potentially corrupt measurements.

More recently, researchers have begun investigating the potential use of image-

based navigation systems for applications where GNSS signals are not available or should

not be used. Independence from external radio-frequency transmissions and potentially

low-cost implementations of camera and image processing suites are among the key ad-

vantages of these newer systems. However, while larger issues of integrity are seemingly

well-understood for many GNSS applications, to the best of our knowledge, no one has

fully addressed rigorous integrity quantification with respect to image-based navigation

systems.

This dissertation first examines and addresses the fundamental differences existing

between the measurement models established for GPS and those of proposed image-based

navigation systems. For example, GPS pseudorange measurements used in a position

determination are provided as a single value per satellite. However, image measurements

are inherently angle-based measurements and assumed to be provided as a pair of pixel
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coordinates for a mapped target. Under these conditions, consideration must be given not

only to the units of the transformations between the states and measurements, but also to

the fact that multiple rows of the observation matrix relate to particular error states in the

image-based case. This is due the added dimensionality of the pixel pair measurements.

Based on this examination, an algorithm is then developed to instantiate a frame-

work for image-based integrity analogous to that of GPS RAIM, as to be understood

in common terms by the navigation community. The algorithm is applied to the case

where the navigation system is estimating position only and then extended to the case

where estimation of both position and attitude is required. Detailed analysis is presented

demonstrating the impact of angular error on a single pixel pair measurement, comparing

results from both estimation scenarios, and showing that, from an integrity perspective,

there is a significant benefit of having known attitude information. Additional studies are

done to demonstrate the impact of pixel pair measurement relative geometries on sys-

tem integrity in this framework, showing potential improvement in image-based integrity

through screening and adding measurements to the navigation system solution, when ad-

ditional measurements are available.
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AN INTEGRITY FRAMEWORK FOR IMAGE-BASED NAVIGATION

SYSTEMS

I. Introduction

M odern military aerospace operations demand highly accurate navigation systems

to faithfully execute their missions. Examples of such missions include precision

bombing, aerial refueling, or simply maintaining a designated spacing in a route corridor,

with the latter being an important consideration for civilian air operations as well. The

advent of Global Positioning System (GPS) positioning has brought unprecedented levels

of navigation accuracy to both the military and civilian communities. With the addition

of new Global Navigation Satellite Systems (GNSS) being developed or improved, the

ability to accurately determine position anywhere on the globe is likely to get even better.

The degree of accuracy that can be achieved is based on how well the navigation system

estimates the true position under normal operating conditions and the quality of sensor

measurements provided to the system. Regardless of the navigation system employed, a

wide variety of equipment, environmental, or modeling errors affecting the system prevent

a perfect determination of the true position.

For example, an Inertial Navigation System (INS) uses specific force and angular

rate measurements to generate estimates of vehicle position, velocity, and attitude as a

result of vehicle dynamics. The actual measurements for the INS are produced by ac-

celerometers and gyroscopes, respectively, jam-resistant sensors that are unaffected by

radio-frequency interferers. This non-transmitting/non-receiving nature of an INS makes

it very useful in military applications, where navigators desire to avoid enemy detection.

Unfortunately, these sensors are influenced by physical errors, such as gravity deflections,

as well as misalignments, drifts, and biases stemming from material or design limitations.

1



The impact of these errors grow over time through the process of integrating the mea-

surements to produce the navigation estimates, degrading system accuracy. Because of

this degradation, applications requiring a higher degree of long-term accuracy often inte-

grate an INS with another navigation system such as GPS. Given a sufficient number of

satellites in view, GPS measurements provide additional position (and possibly velocity)

information to the integrated system, helping to bound the INS errors and improve navi-

gation performance of the system. However, unlike INS, GPS measurements, and those

of other GNSS, are provided via radio-frequency signals, which are susceptible to signal

obstruction, as well as sources of intentional and unintentional interference.

This vulnerability in radio-frequency signals has driven recent research into alter-

native navigation schemes to reduce or eliminate reliance on GNSS, including the fusion

of an INS with camera systems [28; 35; 42; 51; 59; 78; 86; 99; 106; 115; 119; 121; 122;

123; 126; 127]. Image-aided navigation holds potential not only for improved interfer-

ence immunity, but also allows reduced detectability of the user because it is passive, like

INS. An additional advantage for image-aided navigation systems is that cameras accept-

able for this application are potentially inexpensive, can be very small, and have minimal

power requirements [99]. The cited research has shown the feasibility of their respective

integrated approaches and demonstrated reasonable levels of accuracy, although not com-

pletely quantified, on the order of meters in some cases. The achievable level of accuracy

in an integrated INS/image-aided system is a function of the previously mentioned INS

error sources and imaging system considerations including the camera equipment, feature

tracking algorithm, the vehicle trajectory, and the image scene [28].

With image-based navigation systems quickly developing into a capable augmenta-

tion, or even replacement in some instances, of GPS positioning in the aiding of an INS,

means of assuring navigation accuracy become necessary. This dissertation details the

research effort to develop a rigorous integrity approach for image-aided navigation. The

2



research is motivated by the absence of clearly defined integrity monitoring algorithms

and qualitative integrity metrics for assuring image-aided navigation.

1.1 Components of Navigation System Performance

Accuracy alone, however, is an insufficient criterion to define system performance

in precise navigation. Since the true position can never be absolutely known, accuracy is

based on the assumption that the navigation system is operating within specifications, i.e.

no faults are present. But what if this no-fault assumption is false? Electrical or mechan-

ical equipment failures may be easily identifiable through built-in monitoring systems,

but a more subtle and potentially hazardous condition exists when a “soft” failure permits

continued operation of a navigation system whose navigation solution has been corrupted

by the incorporation of faulty sensor data. An example of this is when a bias or ramp er-

ror occurs in a GPS pseudorange measurement and this measurement is used to compute

position. The results could be catastrophic, if, for example, two aircraft failed to maintain

a safe separation due to a misleading position solution. Therefore, the navigation system

should provide not only an estimate of position, but also ensure that the position estimate

does not exceed specified limits without being identified; this concept is called integrity

monitoring [25].

There are, in fact, four essential, and inextricably linked, components of navigation

system performance. These four criteria are availability, continuity of function, integrity,

and accuracy, and all are defined in the Federal Radionavigation Plan (FRP) [1]:

• Accuracy: The degree to which the estimated position matches the true position,

typically evaluated as a statistical measure of system error. Accuracy must be pre-

dictable and repeatable.

• Integrity: The ability of a system to provide a timely warning to users when a

system should not be used for navigation.

• Continuity of function: The ability of the total system to function without interrup-

tion during an entire period of operation. This function includes the alarm rate, and

3



it is essentially the capability of a system to provide both navigation accuracy and

integrity throughout the period of operation [94].

• Availability: The percentage of time the services of a navigation system are useable.

From these definitions, it is clear that a more precise definition of integrity is war-

ranted for research in the area. This is an issue that will be addressed in following sections.

For now, suffice it to say that integrity involves methods which, at a minimum, ensure er-

rors are detected and reported. It is worth noting that it is possible to have poor accuracy

with good integrity and good accuracy with poor integrity, since there are other factors to

consider. However, the two are generally consistent, such that if integrity is poor, the ac-

curacy is probably suspect. If accuracy and integrity requirements cannot be met, then the

system should not be deemed available. It should be clear that these four components are

tied together, and that a change in any one of them influences the status of the others. The

focus of this research is on integrity, but in various discussions there will be inferences to

the impact on the three other elements, because there are definite engineering trade-offs

between all four components.

1.2 Focus on Integrity

The definition of integrity given by the FRP also states that “Integrity is the measure

of the trust that can be placed in the correctness of the information supplied by a navigation

system” [1]. This statement relates the concept of integrity to that of accuracy. There are

two fundamental criteria for integrity: 1) The ability to detect measurement errors, and 2)

to notify the user that the system should not be used for navigation. These criteria are nec-

essary for precise navigation systems, but only sufficient for supplemental navigation. In

a supplemental system, the navigation system is required to provide a position estimate of

a specified accuracy and identify, through integrity monitoring, when that accuracy cannot

be met, allowing the navigator to terminate use and switch to an alternative system [25].

However, if the navigation system is to be used as the sole navigation positioning source

(requiring no back-up system), the system must also be able recover from possible mea-
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surement errors. This means that the integrity method must not only detect errors, but also

exclude the error source and prevent corruption of the navigation solution [25].

Detection of measurement errors can be done by using statistics based on prior anal-

ysis of such errors and evaluating them against a threshold based on a required level of

performance. This last statement implies that outer performance limits must be assessed.

Although not explicitly stated in the FRP statement above, the practical definition of in-

tegrity includes the ability to identify the upper bound on the level of measurement error

that can be detected. Notification of a failure condition is made when measurement error

falls outside the determined threshold, and must be done in a timely manner to allow the

user to take action. There is a potential problem when a “bad” measurement, a measure-

ment representing a fault or failure, falls within the threshold, since no alarm will be given.

This condition is known as a missed detection. The tendency would then be to tighten the

threshold such that fewer errors are missed. However, this gives rise to the potential for a

measurement to fall outside the threshold when a failure has not actually occurred. This is

condition is known as a false alarm.

The specified accuracy threshold and time to alarm are conditioned on the level

of risk associated with the navigation application. Limiting factors must be considered.

This includes accounting for the fundamental trade off in the ability to detect an error and

the false alarm rate, since tightening the threshold to ensure a higher level of accuracy

increases the number of false alarms, thereby limiting the availability of the system for

navigation.

The navigation community has spent at least 20 years in development of GNSS in-

tegrity algorithms and continues to refine methodologies and investigate new approaches.

To develop an image-aided integrity approach, it is necessary to examine in detail the

foundational approaches and the current state-of-the-art techniques. The next section in-

troduces a basic overview of the regulatory guidance driving GPS integrity to provide

perspective on navigation system performance requirements.
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1.3 Regulatory Background

This research focuses on integrity because the rapid growth in navigation technol-

ogy over the last several decades has led to unprecedented levels of navigation position

accuracy and continues to drive the desire for even greater precision. For example, the

Federal Aviation Administration (FAA) has recognized that the development of advanced

systems for determining position, including inertial reference units (IRU) and GNSS, now

means air travel is no longer strictly limited to routes defined solely by ground-based ra-

dionavigation aids. Instead, navigation can be done via waypoints, using optimal routes,

in a process the FAA calls area navigation (RNAV) [38].

The FAA has refined the definition of RNAV to establish performance metrics for

airspace containment, requiring that navigation systems operate within navigation perfor-

mance accuracy 95% of the time, while additionally maintaining continuity and integrity,

in order to ensure aircraft containment certainty of 99.9% [38]. This standard is referred to

as required navigation performance (RNP) by the FAA, and is purely performance based,

not tied to specific equipment or platforms. The current drive is toward achieving a cer-

tainty level of 99.999%, maximizing both safety and efficiency in air travel [38].

However, the concept of RNP can be extended well beyond commercial air travel ap-

plications to all manners of operations where certainty of navigation system performance

is critical. Close air operations, autonomous vehicle control, precision engagements, and

air-to-air refueling are just a few areas where the concept has real application. If vision

systems are used in safety-of-life situations in the future, like GPS is now, then integrity

for them must be developed.

1.4 Key Definitions

The intent of the research is not only to develop an approach for image-aided in-

tegrity, but to do so in terms consistent with the GNSS community. In order to start

framing an approach for INS/image system integrity, it is important to understand a num-
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ber of key terms established by [67]. These are restated below, with several of the core

definitions cited nearly verbatim:

Horizontal Alert Limit (HAL): The maximum horizontal position error allowed for a

given navigation mode (e.g., en-route, non-precision approach) without an alarm

being raised. In other words, the HAL is a specification. If a navigation system

integrity algorithm cannot provide required assurances that the HAL will not be

exceeded, then that navigation system is not allowed to be the primary system used

in the navigation mode.

Horizontal Protection Limit (HPL): The horizontal position error that a fault detection

and exclusion (FDE) algorithm guarantees will not be exceeded without being de-

tected by the fault detection function based on missed detection and false alarm

specifications and assumptions. For GPS, this is a function of only the visible satel-

lites, user geometry, and expected error characteristics. Since it is not based on

current measurements, the HPL can be predicted.

Horizontal Uncertainty Limit (HUL): The estimate of horizontal position uncertainty,

based on inconsistencies in the measurements, that bounds the true error by ≥
99.9%. Since actual measurements are required, the HUL must be computed in

real-time (or may possibly be post-processed if recreating an event).

Horizontal Exclusion Limit (HEL): The horizontal position error that a fault detection

and exclusion (FDE) algorithm guarantees will not be exceeded without being de-

tected and excluded by the fault detection function based on missed detection and

false alarm specifications. Again, for GPS, this is a function of only the visible

satellites, user geometry, and expected error characteristics. However, the ability to

exclude measurements in the HEL determination requires the availability of more

independent measurements than mere detection.
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Positioning Failure: A positioning failure occurs when the position solution error ex-

ceeds the applicable HPL (or HAL if the navigation mode is known by the user

equipment).

False Alarm: The indication of a positioning failure when one has not occurred.

Missed Detection: A positioning failure not detected by the FDE algorithm.

Time to Alarm: Maximum time allowed between the onset of a positioning failure and

the equipment alarm being initiated.

Incorrect Exclusion: An incorrect exclusion occurs when a failure is detected by the

FDE algorithm, but the incorrect failure source is excluded. In the incorrect ex-

clusion, failing to exclude the measurement may or may not cause a positioning

failure.

Wrong Exclusion: A wrong exclusion is an incorrect exclusion resulting in a positioning

failure and also potentially exceeding the required time-to-alarm for the navigation

mode.

Failed Exclusion: A failed exclusion occurs when a valid failure is detected, but the de-

tection condition is not resolved within the time-to-alarm from the onset of a posi-

tioning failure. A failed exclusion does not include the condition where the exclu-

sion of the wrong failure source happens to resolve the detection condition.

This research focuses on horizontal positioning integrity in image-aided navigation

and will use many of the definitions above. Figure 1.1 provides a visual example of the

alert zones. It should be noted that, although not presented here, the terms for vertical

positioning parallel those given above. With the basic definitions in place, the research

problem can be formalized.

1.5 Problem Definition

Limitations and vulnerabilities in GNSS have driven the navigation community to

look for new alternatives in navigation, one of which is image-aided navigation. The

8



3-D Protection Zone

2 x VAL

HAL

True Position

Acceptable 
Position Error Positioning 

Failure

Projected on Plane Tangent to WGS-84

Figure 1.1: Visualization of the alert zones defined by operating
airspace; modeled on [89].

capability and viability of image-aided systems appears to be growing rapidly. As a re-

sult, it will be necessary to ensure that the position solutions provided by these systems

provide the same level of confidence in safety critical applications that has come to be

expected with GNSS-based systems. Therefore, the image-aided systems must meet the

required components of navigation system performance, especially in terms of accuracy

and integrity. However, no current research into the rigorous definition and implementa-

tion of integrity in image-aiding has been uncovered. The concept of navigation integrity

has been well-studied in the GNSS community and continues to be a heavily researched

area [8; 10; 11; 12; 15; 16; 18; 20; 23; 25; 29; 30; 31; 39; 67; 68; 69; 70; 71; 72; 95;

110; 129; 130], even after more than two decades of GPS usage. These concepts provide

some foundation for the pursuit of image-aided integrity, but there are several fundamental

differences between the two types of navigation systems that must be addressed to extend

the concept of integrity to image-aiding.

GPS integrity is based on an inference of the accuracy of the position solution on the

quality of the GPS measurements [25]. While this would also be the case for image-aided
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navigation, user estimates of the error sources associated with GPS are well documented

and readily accessible. This is not the case for the much newer image-aided technology.

Also, individual GPS measurements commonly used are range measurements, meaning

that each measurement is provided by a single source, the satellite, and can be discrimi-

nated from other measurements at each time epoch by the transmitted satellite code. How-

ever, in the case of image-aiding, each measurement source is a target translated to an im-

age plane, and is presented as a measurement in the form of a vector containing a pair of

pixel locations. These pixel locations can be translated as two bearing measurements vice

the single range measurement provided by GPS, for each source at each epoch. Common

integrity methods for GPS have focused on single fault conditions due to the complex-

ity of identifying and excluding multiple simultaneous faults, although current research

is focusing on the multiple failure case. The potential for multiple failures in the image-

aiding case is much higher than the GPS case due to the nature of the two-dimensional

measurement.

Certainly, there have been ad hoc efforts made to preclude measurement outliers,

which clearly enhances integrity. However, actually quantifying the integrity, which re-

quires the formulation of a high-confidence upper bound on position error, has not yet

been done, to the author’s best knowledge, for a vision-based system.

1.6 Research Contributions

The previous sections have motivated the need for developing a framework for

image-based navigation integrity and described basic concepts and terms of GPS integrity.

This research extends the concept of navigation integrity to image-aided navigation, using

GPS integrity definitions and methods as a foundation. The research builds on previ-

ous work done in the GPS navigation community and utilizes an existing image-based

navigation system construct to ultimately develop an approach to image-based navigation

integrity.
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The work presented in this dissertation is the first known investigation into image-

based integrity, and is pursued with the purpose of establishing a performance baseline for

image-based navigation integrity and presenting the development and analysis in terms

that could be easily understood by the navigation community. With image-based navi-

gation technology rapidly advancing it is necessary to develop this baseline now. A sig-

nificant contribution of this dissertation is in initiating a research vein for image-based

navigation systems.

Another key contribution of this research is in the rigorous development of a mathe-

matical relationship relating the horizontal position error, which is not directly observable,

to an associated test statistic that is outwardly observable in the bearing-type measurement

case of the image-based navigation systems described in this research [66]. The new al-

gorithm, described in Chapter IV, produces a value indicative of the horizontal position

error and test statistic relationship allowing prediction of the worst case position error, in

a deterministic evaluation, relative to a specified threshold defined by user probability of

false alarm requirements. Performance evaluations are done in comparison with existing

GPS methodologies, considering an angular error in one or potentially both elements of a

pixel pair. In the single error case, the results parallel that of GPS methods, but in the dual

error case, the results indicate that the new algorithm more accurately captures the impact

of the the “worst-case” angular error.

This effort is extended to make an additional contribution in an evaluation of the im-

pact of attitude on the image-based integrity result [65]. Current integrity methods are not

known to consider the impact of estimating both position and attitude. The research shows

that when extending the image-based navigation problem from one where only position

estimation is done to one where both position and attitude are being estimated, there is a

significant increase in the magnitude of the potential horizontal position error before possi-

ble detection at a defined threshold could occur. The results demonstrate that image-based

navigation integrity in image-based navigation potentially gains significant benefit from
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the use of higher grade inertial measurement units that provide higher accuracy attitude

information.

Additional contributions seen in this research include the study and evaluation of

the relationship between the image-based integrity performance metric and altitude, the

investigation and evaluation of the impact of geometry on image-based navigation in-

tegrity, and examination of linearization when estimating position only with respect to

the image-based integrity performance metric. Unlike GPS integrity levels, image-based

navigation integrity levels can not be readily computed in advance. These additional stud-

ies in altitude, geometry, and linearization result in better characterization of algorithm

behavior under various conditions, and potentially aid in making future advancements of

image-based navigation integrity more predictive of possible performance levels.

1.7 Summary

This chapter provided an introduction to the concepts of navigation integrity, pri-

marily in a GPS context, in order to establish baseline knowledge for the investigation

and development of a context for image-based integrity. Chapter II presents conceptual

and mathematical background for topics to INS/image-aided navigation and GPS integrity.

These topics include least-squares methodology, sensor integration requirements and tech-

niques, imaging theory, and foundational state-of-the-art GPS integrity methods. Chapter

III presents simulation results from an investigation of two GPS/INS integrated integrity

approaches. A new algorithm for an integrity approach for image-based navigation is

developed in Chapter IV. Chapter V presents detailed results and analysis of algorithm

performance in multiple scenarios designed to investigate the impact of estimating posi-

tion and estimating both position and attitude. Finally, Chapter VI provides a summary

and conclusion and outlines future research opportunities based on this research.
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II. Background

T his chapter reviews the mathematical background required to adequately pursue an

image-aided navigation integrity algorithm. The chapter first defines common nota-

tion used throughout the chapter. The chapter then summarizes least-squares and Kalman

filter mathematical derivations, which are both essential to understanding current GPS in-

tegrity algorithms and likely future image-aided algorithms. Since the research is based

on image-aided navigation and comparison with GPS-aided navigation, the chapter also

describes limited basic principles in INS, GPS, and image-based navigation, paying spe-

cific attention to the measurement models used in the latter two. The real emphasis in this

chapter is in the mathematics behind GPS integrity, using selected foundational concepts

spanning from the beginning of GPS integrity to the current state-of-the-art. Finally, a

brief synopsis of current image aiding research is explored.

2.1 Mathematical Notation

For clarity, the following describes common mathematical notation throughout this

chapter:

• Scalars: Scalar quantities are represented by italicized characters (e.g. x or X )

• Vectors: Vectors are denoted by bold type characters (e.g., x or φ) and are com-

posed of scalar elements, normally expressed in column form. For example, xi

indicates the scalar value in the ith row of x.

• Matrices: Matrices are denoted by upper case characters in bold font. Reference to

a particular element of a matrix is done using row, column indexing (e.g., Xij refers

to the element in the ith row and jth column of X).

• Transpose: A vector (or matrix) transpose is denoted by a superscript Roman T , as

in xT .
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• Estimated Variables: Estimates of random variables are denoted by the hat char-

acter, as in x̂.

• Computed Variables: Variables which are corrupted by errors are denoted by the

tilde character, as in x̃.

• Homogeneous Coordinates: Homogeneous coordinate vectors are defined to have

a value of 1 in the last element, and are denoted by an underline, as in x [119].

• Reference Frame: Navigation vector quantities are defined with respect to a spe-

cific coordinate frame, with a superscript letter used to identify the current frame of

reference (e.g., pa is a vector in the a frame).

• Direction Cosine Matrices: Direction cosine matrices are real, unitary, matrices

that transform vectors (or matrices) between three dimensional orthogonal coordi-

nate frames (e.g., Cb
a is the transformation matrix from frame a to frame b).

• Transformation Matrices: Transformation matrices are linear operators that map

vectors or matrices between Rm and Rn.

• Relative Position or Motion: When necessary to specify relative motion between

reference frames, combined subscript letters are used to designate the frames (e.g.,

ωc
ab represents the rotation rate vector of the a-frame with respect to the b-frame,

expressed in c-frame coordinates) [119].

• Identity Matrices: Identity matrices are defined as having the value of 1 for each

diagonal entry and 0 everywhere else, and are denoted as I. Where necessary, the

dimensions of the identity matrix are provided in subscript notation.

• Skew-Symmetric Matrices: A Skew-symmetric matrix for a vector a = [a1, a2, a3]
T ,

is denoted by [a×], and takes the form:

[a×] =




0 −a3 a2

a3 0 −a1

−a2 a1 0



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2.2 Mathematical Background

2.2.1 Least Squares Primer. As mentioned in Chapter I, the concept of integrity

monitoring involves inferring some measure of quality of the position solution from the

measurements provided to the system. Vehicle dynamics and sensor measurements are

often non-linear. To make the navigation problem tractable, these functions are frequently

linearized in order to use well-established mathematical techniques. Indeed, the determin-

istic measurement model is typically given in linear form as:

z = Hx (2.1)

This simplistic model forms the basis for integrity. The ability to solve this problem

in terms of the most accurate value for x given a potentially noise or error-corrupted value

of z is at the core of integrity algorithms. Integrity also requires measurement redundancy,

i.e., H is overdetermined, with m equations to solve for n unknowns (m > n). Since the

GPS-only approaches to integrity began with the least-squares method, it is worth quickly

summarizing here. Except where noted, the discussion follows the presentations by [3]

and [108].

The fact that the observation matrix, H is overdetermined means that the the solution

to z = Hx will likely be inconsistent, resulting in z−Hx 6= 0. The least-squares approach

is to find an estimate of x, denoted as x̂, which minimizes the value of ‖z−Hx‖ with

respect to the Euclidian inner product. Letting U be the column space of H, the problem

is best described geometrically as finding the x̂ in Rn such that Hx̂ is the vector in U that

is closest to z. This closest vector is the orthogonal projection of z onto U, and since U

lies in the column space of H, then ‖z−Hx̂‖ lies in the nullspace of HT . As a result, the

least squares solution is given by:

HT (z−Hx̂) = 0 (2.2)
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or, by multiplying through and rearranging terms:

HTHx̂ = Hz (2.3)

which is also called the normal equation in statistics [108]. If the columns of H are linearly

independent, then HTH is invertible, and the best estimate of x̂ can be given as:

x̂ = (HTH)−1HTz (2.4)

The above analysis assumes that each measurement is of equal value. The case of-

ten arises where some observations have higher merit than others, and thus should have

greater influence on the estimated solution. Therefore, it is sometimes valuable to ap-

ply weighting to the measurements, which can be done by multiplying both sides of the

original measurement equation by a full rank weighted matrix, W:

WHx = Wz (2.5)

such that weighted (or generalized) least squares solution can be expressed:

HTWTWHx̂ = HTWTWz (2.6)

or letting C = WTW:

HTCHx̂ = HTCz (2.7)

such that the weighted estimate is given by:

x̂W = (HTCH)−1HTCz (2.8)
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Typically, the best choice for an unbiased matrix C is the inverse covariance matrix,

whose diagonal entries are the variances of the error for each measurement, and whose

off-diagonal terms are the cross-covariances of the measurement errors [108]. This for-

mulation is convenient when extending to the case where the measurement model is influ-

enced by zero-mean, additive white Gaussian noise (AWGN), v, e.g. z = Hx + v, whose

covariance matrix is commonly represented as the diagonal matrix R. Thus:

x̂W = (HTR−1H)−1HTR−1z (2.9)

Under the condition that the R matrix is the diagonal matrix of the error covariances, this

model is considered a minimum-variance estimator, and also the “best linear unbiased

estimator,” according to the Gauss-Markov theorem [62]. In addition, if v is normally dis-

tributed with a mean of zero and covariance R, Equation (2.9) is the maximum likelihood

estimator, of which a Kalman filter is the recursive equivalent [62], when the conditions

that the state vector is a random constant, H is overdetermined, and there is no a pri-

ori knowledge about x hold [19]. The covariance of the optimal estimate, x̂, is given

by [48; 62]:

Px̂x̂ = (HTR−1H)−1 (2.10)

with the expected value:

E{x̂} = x (2.11)

This discussion is meant to serve as a primer for the following sections. It is easy

to see the relationships between the observation matrix, the measurement vector and the

least-squares estimate vector from this simple illustration. It is also easy to visualize that

if x̂ is the best single epoch estimate of a navigation position solution (or more precisely,

the position errors in an error state model), how perturbations in z or H would affect
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the quality of the estimate. In part, the problem of integrity is determining when these

perturbations have compromised the navigation solution.

2.2.2 The Kalman Filter. The Kalman filter can be used to handle modeling,

estimation, and control, producing meaningful design and analysis results. Under the

conditions given in the previous section, the filter operates as a recursive least-squares

filter. However, this filter serves to replace the least-squares approach when the state

vector is stochastic with behavior that varies as a function of time [48]. The Kalman filter

is efficient in these cases, since it does not require the storage of all previous data for the

incorporation of a new measurement [80]. Instead, the filter propagates forward the best

estimate of the state variables of interest, starting with the a priori information, and forms

a new best estimate based on the propagated estimate and the incoming measurement. The

process repeats, continually refining the estimate of the variables under consideration.

Under the assumptions that the system being modeled is linear, and that the system

and measurement noises are white and exhibit Gaussian statistics, the Kalman filter is

an optimal estimator [80]. The ability of the Kalman filter to synthesize all available

measurements, including noise-corrupted ones, makes it an especially powerful technique

in modeling and estimating stochastic processes. The filter may yield suboptimal results

if the conditions of the physical system or measurement devices that form the basis of the

filter models were to change. This characteristic often aids in fault detection, provided the

system does not become corrupted by these changes. In situations in which models are

not linear, it may be possible to utilize the linearized Kalman filter or extended Kalman

filter discussed in later sections. Mathematical descriptions of the filter models follow [80]

and [81].

2.2.3 State and Measurement Model Equations. Physical systems are typically

described by continuous-time dynamics. For the purposes of computer simulation and

analysis, it is often desirable to convert the dynamics model to discrete-time as well. Both
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the continuous-time and discrete-time representations are presented below. The sampled-

data measurements are inherently discrete-time.

A linear continuous-time state model can be expressed in state-space form [80]:

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.12)

where

x(t) = the (n× 1) system state vector

F(t) = the (n× n) state dynamics matrix

B(t) = the (n× r) control input matrix

u(t) = the (r × 1) deterministic control input vector

G(t) = the (n× s) noise input matrix

w(t) = (s× 1) dynamics driving noise vector

where w(t) is a zero-mean white Gaussian noise of strength Q(t):

E{w(t)w(t + τ)} = Q(t)δ(τ) (2.13)

and δ(•) is the Dirac delta function.

At discrete times the solution to Equation (2.12) may be written as:

x(tk) = Φ(tk, tk−1)x(tk−1) +

[∫ tk

tk−1

Φ(tk, τ)(τ)dτ

]
u(tk−1)

+

[∫ tk

tk−1

Φ(tk, τ)G(τ)dβ(τ)

]
(2.14)

where it has been assumed that u(t) is maintained at a constant vector over the interval

from tk to tk−1 (as would be the case if it were generated as the output of a digital computer

put through a zero-order hold).
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The equivalent discrete-time stochastic difference equation can then be expressed:

x(tk) = Φ(tk, tk−1)x(tk−1) + Bd(tk−1)u(tk−1) + Gd(tk−1)wd(tk−1) (2.15)

The state transition matrix, Φ(tk, tk−1), is found as a solution to:

d

dt
Φ(t, tk−1) = F(t)Φ(t, tk−1), Φ(tk−1, tk−1) = I (2.16)

integrated from tk−1 to tk. In the special case where F(t) is constant, the state transition

matrix may be defined as:

Φ(tk, tk−1) = Φ(∆t) = eF∆t (2.17)

where ∆t , tk − tk−1

The discrete-time input matrix and discrete-time noise vector are determined from:

Bd(tk−1) =

∫ tk

tk−1

Φ(tk, τ)B(τ)dτ (2.18)

wd(tk−1) =

∫ tk

tk−1

Φ(tk, τ)G(τ)dβ(τ) (2.19)

with Gd(tk−1) assumed to be the identity matrix I. The discrete-time white Gaussian

dynamics driving noise has the statistics:

E{wd(tk)}= 0 (2.20)

E{wd(tk)w
T
d (tk)} = Qd(tk) =

∫ tk

tk−1

Φ(tk, τ)G(τ)Q(τ)GT (τ)ΦT (tk, τ)dτ (2.21)

E{wd(tk)w
T
d (tj)}= 0, tk 6= tj (2.22)
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As mentioned previously, the measurements given to the filter are typically sampled

sensor data. The measurement model is then naturally expressed in discrete-time form:

z(tk) = H(tk)x(tk) + v(tk) (2.23)

The statistics of the associated measurement corruption noise, v(tk), are given by:

E{v(tk)} = 0 (2.24)

E{v(tk)v
T (tj)} = R(tk)δjk (2.25)

where δjk is the Kronecker delta. The independence of the dynamics driving noise wd(tk)

and the measurement corruption noise v(tk) is assumed, resulting in:

E{wd(tk)v
T (tj)} = 0 for all k and j (2.26)

2.2.4 Kalman Filter Propagation and Update. The Kalman filter propagates

forward in time from tk−1 to tk (or equivalently from tk to tk+1) starting from the last

update cycle state and covariance estimates. Any available a priori information about the

initial state and covariance estimates is used in the first propagation cycle. The superscript

“−” is used to denote the propagated estimate immediately before update at a given sample

time, while the “+” indicates the result of the update after measurement incorporation.

x̂(t−k ) = Φ(tk,tk−1)x̂(t+k−1) + Bd(tk−1)u(tk−1) (2.27)

P(t−k ) = Φ(tk,tk−1)P(t+k−1)Φ
T (tk,tk−1) + Gd(tk−1)Qd(tk−1)G

T
d (tk−1) (2.28)

When measurements become available, the Kalman filter is updated by:

K(tk) = P(t−k )HT (tk)
[
H(tk)P(t−k )HT (tk) + R(tk)

]−1

(2.29)
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x̂(t+k ) = x̂(t−k ) + K(tk)
[
zi −H(tk)x̂(t−k )

]
(2.30)

P(t+k ) = P(t−k )−K(tk)H(tk)P(t−k ) (2.31)

The residuals in Equation (2.30) are the computed differences between the incoming mea-

surement and the filter’s best prediction of what the measurement would be. The Kalman

filter residual vector is defined as:

r(tk) = z(tk)−H(tk)x̂(t−k ) (2.32)

with a filter-computed covariance:

A(tk) = H(tk)P(t−k )HT (tk) + R(tk) (2.33)

The residuals and their associated covariance provide for the monitoring of filter

performance, and provide indications as to whether the assumptions of adequacy of the

filter model are being satisfied. Under the proper conditions, a well-modeled filter should

exhibit residuals which are zero-mean, white, and Gaussian in nature, with the expected

covariance A(tk).

2.3 The Linearized and Extended Kalman Filters

In problems in which nonlinearities in the deterministic portion of the dynamics

model or measurement model are not truly negligible [81], it may be possible to use exten-

sions of the linear Kalman filter. The development of the linearized and extended Kalman

filters allow for such cases, provided additional assumptions are met. For example, the

previously stated noise statistics are still required, but are now also assumed to be additive

in a linear fashion, and the nonlinear dynamics model must meet specific criteria for con-

tinuity described in [81]. By using the linearized and extended Kalman filter techniques to

approximate a true optimal nonlinear filter, many nonlinear problems of interest can still

be addressed using linear estimation theory.
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In linearized Kalman filtering, the state and measurement equations are linearized

about a nominal state trajectory in order to estimate small changes in the states with respect

to that trajectory. If the time interval over which the changes occur is kept sufficiently

small, these deviations may be evaluated as linear perturbations over the interval. Adding

this optimal estimate of the change in the state to the nominal state value produces an

overall estimate of the total state. This technique has specific application in GPS/INS

integration schemes shown later in this chapter.

The extended Kalman filter relinearizes about the the most recent total state estimate

of the trajectory, instead of using the fixed nominal trajectory [125]. By relinearizing about

each new state estimate as it is computed, the deviations relative to the newly declared

nominal trajectory are expected to remain sufficiently small, further validating the use of

linear perturbation techniques.

2.3.1 State and Measurement Model Equations. Let the system be well mod-

eled by the following nonlinear, stochastic differential equation:

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (2.34)

where f [x(t),u(t), t] is described as a nonlinear function of three arguments: the n-

dimensional state vector x(t), the r-dimensional deterministic control input function u(t),

and of continuous-time t. The dynamics driving noise vector, w(t), is a zero-mean, white

Gaussian noise process with covariance kernel:

E{w(t)wT (t + τ)} = Q(t)δ(τ) (2.35)

as described in preceding sections, with τ having units of time.

23



The nonlinear discrete-time measurement equation, modeled as a function of state

and time, plus linearly additive white noise, takes the form:

z(tk) = h[x(tk), tk] + v(tk) (2.36)

where z(tk) is the m-dimensional measurement vector and v(tk) is the m-dimensional

discrete-time measurement corruption white noise vector with the following statistics:

E{v(tk)} = 0 (2.37)

E{v(tk)v
T (tj)} =





R(tk) for tk = tj

0 for tk 6= tj
(2.38)

2.3.2 The Linearized Kalman Filter. The linearized Kalman filter is based on

perturbation states about the nominal state trajectory, xn(t), which satisfy both the initial

condition xn(t0) = xn0 and the deterministic differential equation [125]:

ẋn(t) = f [xn(t),u(t), t] (2.39)

The associated measurements, also defined by the nominal trajectory, are defined as:

zn(tk) = h[xn(tk), tk] (2.40)

The perturbation of the state is determined by differencing the original states, Equa-

tion (2.34) and the nominal states, Equation (2.39), which yields a stochastic process

satisfying [81]:

δẋ(t) = [ẋ(t)− ẋn(t)] = f [x(t),u(t), t]− f [xn(t),u(t), t] + G(t)w(t) (2.41)
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Approximating δẋ(t) = [ẋ(t)− ẋn(t)] to first order through a truncated Taylor series

expansion, the perturbation equation can be written as:

δẋ(t) = F[t;xn(t)]δx(t) + G(t)w(t) (2.42)

where F[t;xn(t)] is the linearized dynamics matrix (n-by-n), found by taking the partial

derivatives of f [x(t),u(t), t] with respect to x(t), and evaluating them along the nominal

trajectory, xn(t) [125]:

F[t;xn(t)] ,
∂f [x,u(t), t]

∂x

∣∣∣∣
x=xn(t)

(2.43)

The derivation of the discrete-time perturbation measurements parallels the previous dis-

cussion, resulting in the difference equation being described as:

δz(tk) = [z(tk)− zn(tk)] = h[x(tk), tk]− h[xn(tk), tk] + v(tk) (2.44)

with the first order approximation of δz(tk):

δz(tk) = H[tk;xn(tk)]δx(tk) + v(tk) (2.45)

where H[tk;xn(tk)] is the linearized observation matrix (m-by-n), found by taking the

partial derivatives of h [x(tk), tk] with respect to x(tk), and again evaluating them along

the nominal trajectory:

H[tk;xn(tk)] , ∂h[x, tk]

∂x

∣∣∣∣
x=xn(tk)

(2.46)
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The linearized Kalman filter produces an estimate of δx(t), denoted as δx̂(t), which

is used to form the best estimate of the total state:

x̂(t) , xn(t) + δx̂(t) (2.47)

Linear filter theory may now be applied to Equations (2.42) and (2.45), provided the

required partial derivatives exist. Filter performance is conditioned on the perturbations

remaining small enough that approximations made by truncating the Taylor series expan-

sion to first-order are justified. Compensatory adjustments of the white noise strengths of

w(t) in Equation (2.42) and/or the covariance of the noise v(tk) in Equation (2.45) should

be considered in an effort to account for the loss of higher order terms.

2.3.3 Extended Kalman Filter Equations. In extended Kalman filtering, the

filter is relinearized about the new estimate of the total state, x̂(t+k ), once it is formed,

enhancing the assumptions made when using linear perturbation techniques by incorpo-

rating this new reference trajectory into the estimation process. Starting from the initial

conditions, x̂(tk−1/tk−1) = x̂(t+k−1) and P(tk−1/tk−1) = P(t+k−1) (using x̂0 and P0 for the

first cycle), the extended Kalman filter propagates the estimate forward to the next sample

tk time by integrating [81]:

˙̂x = f [x̂(t/tk−1),u(t), t] (2.48)

Ṗ(t/tk−1) = F[t; x̂(t/tk−1)]P(t/tk−1) + P(t/tk−1)F
T [t; x̂(t/tk−1)] + G(t)Q(t)GT (t)

(2.49)

where the time argument t/tk−1 denotes the realization of the variable at time t, condi-

tioned on the measurements through time tk−1 [125]. F[t; x̂(t/tk−1)] is the n-by-n partial

derivative matrix linearized about the state estimate x̂(t/tk−1):
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F[t; x̂(t/tk−1)] , ∂f [x,u(t), t]

∂x

∣∣∣∣
x=x̂(t/tk−1)

(2.50)

for all t in the interval [tk−1, tk). After integrating Equations (2.48) and (2.49) to the next

sample time, x̂(t−k ) and P(t−k ) are defined as:

x̂(t−k ) = x̂(ti/ti−1) (2.51)

P(t−k ) = P(ti/ti−1) (2.52)

The extended Kalman filter incorporates the measurement z(tk) = zi by means of:

K(tk) = P(t−k )HT [tk; x̂(t−k )]{H[tk; x̂(t−k )]P(t−k )HT [tk; x̂(t−k )] + R(tk)}−1 (2.53)

x̂(t+
i
) = x̂(t−

i
) + K(tk){zi − h[x̂(t−k ), tk]} (2.54)

P(t+
i
) = P(t−

i
)−K(tk)H[tk; x̂(t−k )]P(t−

i
) (2.55)

where H[tk;x(t−k )] is the m-by-n observation matrix, linearized about the state estimate:

H[tk; x̂(t−k )] , ∂h[x, tk]

∂x

∣∣∣∣
x=x̂(t−k )

(2.56)

2.4 Strapdown Inertial Navigation System

Inertial navigation is the method of determining a vehicle’s current position based

on the vehicle’s point of origin, how long it has traveled, and the velocity and direction of

movement based upon measurements of specific force and rotation. An inertial navigation

system (INS) is a mechanized way of performing this navigation [112]. Modern strapdown

inertial navigation systems are composed of an inertial measurement unit (IMU), digital

computers, and navigation algorithms [112]. A standard IMU for three dimensional nav-

igation contains three accelerometers to measure specific force, (f ), and three gyroscopes
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to measure angular rate of change (ω) [112]. The orientation of the accelerometers and

gyros is fixed with respect to the vehicle body frame in the strapdown INS.

Gyroscopes measure the rate of change in the vehicle’s orientation with respect to

the inertial reference frame [119]. This relationship is denoted ωb
ib, where the superscript

indicates the observation frame (body or b-frame here), and the subscript indicates frame

of reference frame and the measurement frame, respectively (here, from the inertial or

i-frame to the b-frame). Integrating the angular rate values forward from the initial con-

ditions yields the vehicle’s attitude angles. The attitude computer within the INS uses

the angular rate values from these sensors to transform the specific force from the vehicle

body frame into the inertial reference frame. Transformations into other coordinate frames

are often desired, and can be accomplished using direction cosine matrices related to the

specific frame of interest [45].

Potential reference frames include the Earth-fixed inertial frame (the previously

stated i-frame), Earth-centered, Earth-fixed frame (ECEF or e-frame), the vehicle body

frame (the previously stated b-frame), or a local navigation frame (n-frame), of which

North-East-Down (NED) and Latitude, Longitude, and Altitude (LLh, denoted as Lλh

to delineate Latitude and Longitude) are two examples. An additional frame of refer-

ence brought on by image-aiding is the camera frame (c-frame), which will be discussed

later. Some examples of alternative reference frames are shown in Figure 2.1, namely the

NED frame and the ECEF frame. The following discussions will primarily focus on a

local navigation frame of reference. For detailed theory and model development, the work

by [13; 100; 112; 119] provide excellent descriptions of reference frames and associated

INS dynamics models.
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Figure 2.1: Examples of Navigation Reference Frames.

Specific force measured by an accelerometer is not exclusively the acceleration of

the vehicle; it is the sum of the acceleration with respect the the inertial frame and acceler-

ation due to gravity. The INS must include a gravity model and the Earth’s rate, ωi
ie or ωe

ie,

in its navigation computer to separate acceleration from the specific force measurements.

Acceleration is the first derivative of velocity and the second derivative of position. Given

the appropriate initial conditions and the acceleration value, resolved through the above

method, the vehicle velocity and position can be determined through integration.

Typical strapdown implementations use the IMU to generate angular rate and spe-

cific force measurements as discrete values proportional to the sensed motion. These

values are identified as ∆Θ (delta-theta) and ∆v (delta-v) pulses (shown in Figure 2.2),

respectively. Using a digital computer, the “integration” is actually done by accumulating

the ∆Θ’s and ∆v’s over time. This computer processing is a function of the inertial nav-

igation unit (INU), a unit primarily made up of navigation and gravity computers used to
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Figure 2.2: Inertial Navigation System Block Diagram.

develop a navigation solution based on navigation equations (like those presented in the

following discussion).

The accelerometers and gyroscopes report measurements in the body frame, but the

navigation equations may be solved in a number of different reference frames. Choosing

a specific reference frame, or mechanization scheme, for implementation is typically ap-

plication dependent. Different mechanization schemes must account for differences in the

way “apparent forces,” such as Coriolis and centripetal forces, are modeled. The following

material presents a basic summary of the navigation equations associated with the n-frame

mechanization.

Since most navigation is performed over long distances on the Earth [119], the INS

mechanization in a local level navigation frame mechanization is often convenient. The

navigation equations for this mechanization are given in terms of the acceleration, the

derivative of velocity, v̇, as [13; 112]:

v̇n
e = Cn

b f
b − (2ωn

ie + ωn
en)× vn

e + gn
l (2.57)

= Cn
b f

b − (ωn
ie + ωn

in)× vn
e + gn

l

where
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Cn
b is the direction cosine matrix used to transform a vector

from the body frame to the navigation frame

ωn
ie is the angular rate of the Earth frame with respect to the

inertial frame, as seen from the navigation frame

ωn
en is the angular rate of the navigation frame with respect to the

Earth frame, as seen from the navigation frame (i.e., transport rate)

ωn
in is the angular rate of the Earth frame with respect to the

inertial frame, as seen from the navigation frame

gn
l is the local gravity vector expressed in the navigation frame

Let Ωb
nb be the skew-symmetric matrix formed from the elements of ωb

nb = [ωx, ωy, ωz]
T ,

where ωx, ωy, and ωz represent angular rate measurements of the body frame with respect

to the navigation frame, as observed from the body frame. Ωb
nb is then defined as [112]:

Ωb
nb = ωb

nb× =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (2.58)

where ωb
nb is computed as:

ωb
nb = ωb

ib −Cb
nω

n
in (2.59)

= ωb
ib − (Cn

b )T (ωn
ie + ωn

en)

with ωb
ib = [p, q, r]T where p,q, and r represent angular rate measurements provided by

the gyroscopes in the three axes. The direction cosine matrix, Cn
b , is propagated forward

using [112]:

Ċn
b = Cn

b Ω
b
nb (2.60)

Figure 2.3 shows the navigation frame mechanization.
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Figure 2.3: Block Diagram Illustrating the Navigation Frame Mechanization of Strap-

down INS (based on [112]).

Expressing the vector quantities described above, in terms of the individual components,

the navigation equations are [13; 112]:

v̇N = fN − vE(2Ω + λ̇) sin(L) + vDL̇ + ηg (2.61)

v̇E = fE + vN(2Ω + λ̇) sin(L) + vD(2Ω + L̇) cos(L)− ξg (2.62)

v̇D = fD + vE(2Ω + λ̇) cos(L)− vN L̇ + g (2.63)

where
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fN , fE, fD are the specific forces in the North, East and Down directions

vN , vE, vD are the velocity components in the North, East and Down

directions

L is the current latitude

Ω is the Earth’s rotation rate, 7.292115× 10−5 rad/s

η, ξ are the angular deflections in the direction of the normal

gravity vector observed in the North and East axes, respectively,

due to variations in Earth’s gravitational field

g is the vertical gravity vector due to the mass attraction of Earth

L̇ is the time rate of change of the latitude

λ̇ is the time rate of change of the longitude

Accounting for the fact that the Earth is ellipsoidal, the time rates of change for latitude,

longitude and height above the surface of the Earth are given by [112]:

L̇ =
vN

(RN + h)
(2.64)

λ̇ =
vE sec(L)

(RE + h)
(2.65)

ḣ = −vD (2.66)

where

h = height above the Earth

RN = meridian radius of curvature =
R(1− e2)

(1− e2 sin2(L))3/2
(2.67)

RE = transverse radius of curvature =
R

(1− e2 sin2(L))1/2
(2.68)

with R equal to the length of Earth’s semi-major axis and e representing the major eccen-

tricity of the ellipsoid.
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It should be noted that the sec(L) term in Equation (2.65) is singular at ±90◦ lat-

itude, which is problematic when navigating around Earth’s poles. The wander azimuth

axis system may be used to avoid this singularity [112], and should be considered if navi-

gating at higher latitudes. Details of the wander azimuth frame will not be presented here,

but may be found in [13; 100; 112].

In concluding this section, it is important to identify a couple of key characteristics

of the strapdown INS. The INS is completely self-contained, using its own inertially-

sensed and derived information to render a navigation solution [112]. Many aerospace

applications require this type of system independence. INS also exhibits superior high

frequency response [13; 45; 50]. This attribute reflects good performance in high vehicle

dynamics situations. However, errors resulting from imperfect initial conditions and grav-

ity computations, limit INS accuracy. Significant potential error sources of the INS result

from physical limitations of the accelerometers and gyroscopes, particularly gyro drift

rates. These errors propagate with time, resulting in poor long-term position estimation

and degraded low-frequency response [13; 45; 50]. To attain better long-term perfor-

mance, the INS system is usually aided with other systems, as was stated in Chapter I,

using GPS as an example, with the INS providing a reference trajectory for an integration

filter, like the linearized or extended Kalman filters.

2.5 Global Positioning System

The Global Positioning System (GPS) is a space-based navigation system providing

accurate three-dimensional velocity and position information to users worldwide [60]. The

system employs a minimum of 24 satellites in medium earth orbit to guarantee continuous

coverage [84]. GPS navigation provides very good long-term accuracy, but is adversely

affected by high frequency error in short-term performance, while INS has complementary

attributes, having good short-term accuracy, but being prone to low-frequency drift caused

by sensor errors [48]. Aiding of the GPS receiver with other sensors, particularly an INS,
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may loosen the restrictions on the number of required satellites and improves the overall

navigation solution in high dynamics environments.

GPS utilizes the concept of signal time-of-arrival and operates passively, so an un-

limited number of users can operate simultaneously [60; 84]. A system user receives

radio-frequency signals transmitted from known satellite locations. The time difference

between when a signal is sent and when it is received is multiplied by the speed of light

to determine a range difference. This measurement, termed “pseudorange,” is not the true

range.

The pseudorange differs from the true range primarily due to errors in the receiver

clock. Since the receiver clock error is consistent for all measured pseudoranges over a

reasonable time of interest, it is often considered a bias and must be estimated [84]. The

three coordinates of spatial position must also be estimated. Normally, position determi-

nation requires the iteration of a system of equations based upon the four unknowns (three

position coordinates and one clock bias term). Unless either system time or altitudes are

accurately known, a minimum of four satellites in view is therefore required to determine

position [60].

The actual GPS signal is not described here, as the importance in this research is

in what the signal represents in terms of aiding measurements. For specific details on

the GPS signal, see [49; 60; 84; 107]. GPS receivers can provide up to four different

raw measurements: Pseudorange, Doppler, Carrier-phase, and Carrier-to-noise density.

Raw measurements are generated internally, and are not to be confused with the position

and velocity outputs provided by virtually all receivers. Access to raw measurements is

required in many of the GPS/INS methods discussed in Section 2.6. The pseudorange

measurement is used in nearly all applications, and is commonly the only measurement

used.

2.5.0.1 Pseudorange Measurements. As mentioned in Section 2.5, pseu-

dorange is true range between the satellite and user plus the effect from a number of error
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sources. Previously, only the receiver clock bias was mentioned. In truth, possible range

errors also include satellite clock errors, as well as errors due to atmospheric conditions

and multipath. The pseudorange measurement can be expressed as [107]:

ρ = r + c(δtu − δtsv) + cδtiono + cδttropo + cδtmp + v (2.69)

where

ρ = GPS pseudorange (meters)

r = True range from the user to satellite (meters)

c = Speed of light (meters/second)

δtu = Receiver clock error (seconds)

δtsv = Satellite clock error (seconds)

δtiono = Errors due to ionospheric delay (seconds)

δttropo = Errors due to tropospheric delay (seconds)

δtmp = Errors due to pseudorange multipath (seconds)

v = Errors due to receiver noise (meters)

The ρ represents the line-of-site (LOS) distance, or range, between the receiver and the

satellite, and can be alternatively expressed in a simplified model form [84]:

ρ = ‖xu − xs‖true + b + ε (2.70)

where

ρ = GPS pseudorange (meters)

xu = The receiver x,y,z coordinates in ECEF (meters)

xs = The satellite x,y,z coordinates in ECEF (meters)

b = The receiver clock bias (meters)

ε = Error in the measurement
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Atmospheric modeling and antenna design are used to mitigate the impact of these

errors on ρ, leaving the presumably predominate error to be the clock bias. The error, can

then be modeled as a clock bias term, b, and the uncorrected residual errors, ε, which are

assumed to be more noise-like, on the pseudorange measurement. Since the pseudorange

is a non-linear measurement, it is linearized about an initial approximated receiver position

and bias, ρ0, and solved iteratively, making use of the previously described methods. The

formulation is given by [84], letting the true position, xt and true bias term, b, equal the

initial guess plus an error term, with xt = x0 + δx and b = b0 + δb, respectively. The error

terms form the correction terms to apply to the initial estimates. Letting ρc represent the

corrected pseudorange, the linear equation is developed using a first order Taylor series

approximation [24; 84; 89; 90]:

δρ = ρc − ρ0

= ‖xt − x0 − δx‖ − ‖xt − x0‖+ (b− b0) + ε (2.71)

≈ − (xt − x0)

‖xt − x0‖δx + δb + ε

The equation can now be constructed in the form of z = Hx + v, as shown, with x =

[x y z ]T [84]:
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δρ =




δρm1

δρm2

...

δρmn




=




− (xm1 − x0)

‖xm1 − x0‖ − (ym1 − y0)

‖xm1 − x0‖ − (zm1 − z0)

‖xm1 − x0‖ 1

− (xm2 − x0)

‖xm2 − x0‖ − (ym2 − y0)

‖xm2 − x0‖ − (zm2 − z0)

‖xm2 − x0‖ 1

...
...

...
...

− (xmn − x0)

‖xmn − x0‖ − (ymn − y0)

‖xmn − x0‖ − (zmn − z0)

‖xmn − x0‖ 1





 δx

δb


 + ε

(2.72)

where the subscript mi indicates the value is based on the ith measurement. Representing

δρ as [84]:

δρ = Hδx + ε (2.73)

where

δx =


 δx

δb


 ; H =




− (xm1 − x0)

‖xm1 − x0‖ − (ym1 − y0)

‖xm1 − x0‖ − (zm1 − z0)

‖xm1 − x0‖ 1

− (xm2 − x0)

‖xm2 − x0‖ − (ym2 − y0)

‖xm2 − x0‖ − (zm2 − z0)

‖xm2 − x0‖ 1

...
...

...
...

− (xmn − x0)

‖xmn − x0‖ − (ymn − y0)

‖xmn − x0‖ − (zmn − z0)

‖xmn − x0‖ 1




(2.74)
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facilitates use of the linear methods described earlier. For example, the least-squares so-

lution for an overdetermined system can now be expressed as [84]:


 δx

δb


 =

(
HTH

)−1
HT δρ (2.75)

The detail provided in this section was partly designed to provide necessary fa-

miliarity with the GPS pseudorange measurement, as well as demonstrate some of the

methodologies already presented for later discussions of GPS integrity algorithms. An-

other reason was to explicitly show the construction of the range measurements (e.g. δρ)

and the H matrix for comparison with image-aided measurement models. The next section

provides a basic overview of two predominant INS/GPS integration schemes for visual-

ization of INS aiding methodology prior to introducing concepts related to image aiding.

2.6 INS Integration

As described in the last section, the complementary properties of INS and GPS

make integration schemes an attractive way to overcome the shortcomings of the indi-

vidual navigation systems. This section provides a brief overview of ways an INS (or

more specifically, the IMU) and GPS receiver may be combined to enhance the overall

navigation solution.

Kalman filtering is the primary method of integrating INS and GPS data in most air

navigation applications [14; 73; 80]. Either a direct or indirect Kalman filter formulation

may be chosen based on the application. In the direct filter formulation, the filter esti-

mates the total states of interest using the INS and GPS outputs as measurements. These

states typically include, at a minimum, the position, velocity, and attitude of the vehi-

cle. The filter uses a full dynamics model of the systems, and must have knowledge of

how each subsystem is related functionally to the other. Consequently, a high sample rate

is necessary in order to achieve adequate performance. In general, this implementation is
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computationally burdensome, and the filter performance may be compromised due to non-

linearities in the best models for vehicle dynamics. The direct formulation also presents a

risk in that if the filter fails, the entire navigation system fails [80].

To limit the risks associated with the direct formulation, typical air navigation sys-

tems employ the indirect (error-state) approach to Kalman filtering [14; 73; 80]. The

indirect formulation estimates the errors in the INS position, velocity, and attitude states,

rather than the states themselves. Primarily dominated by low-frequency Schuler rate

dynamics, INS errors change at a lower frequency than vehicle position, velocity, and

attitude, allowing slower sample rates and reduced computational burden [80].

In addition to the two types of formulation, there are two possible mechanizations:

feedforward and feedback. Given the previous discussion, these mechanizations will only

be related to the indirect formulation. In the feedforward approach, the Kalman filter pro-

duces optimal estimates of the error states, which are subtracted from the INS-generated

position to form a total state estimate. Since the INS is not dependent on the filter directly,

position solutions would still be available, should the filter or sensors fail [80]. The feed-

forward approach does have one glaring weakness. Since corrections are not being applied

to the INS directly, the INS errors will eventually grow large enough to violate the linear

model assumptions made in using the Kalman filter. In the feedback implementation, the

optimal estimates of the error state are applied to the INS as corrections used to bound the

inertial errors. In this way, the adequacy of the linear model assumption is enhanced [80].

This corrective feedback becomes increasingly necessary when employing lower quality

INS. The feedback implementation does run the risk of corrupting the INS output by feed-

ing back inaccurate error estimates, but it is assumed that slow INS error dynamics would

allow detection and compensation of such difficulties before the solution is degraded [80].

In the last several years, two particular INS/GPS integration methods have been

consistently used to improve the overall accuracy of the navigation solution. Referred to

as “loosely-coupled” and “tightly-coupled” integration, these techniques have gained wide
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acceptance [73], and are currently employed in many Air Force platforms. These methods

are described in the sections that follow.

2.6.1 Loosely-Coupled Integration. Loosely-coupled integration is the the

most straightforward implementation of the three integration schemes, since the GPS and

INS typically already exist as independent navigation systems. The GPS receiver uses its

own Kalman filter to process raw pseudorange (ρ) and delta-range (∆R) measurements

and to output a GPS navigation estimate of position and velocity. A second Kalman filter

uses the navigation estimate as a “measurement” vector to produce estimates of the INS

error. This second filter is an integration filter designed using both INS and GPS dynam-

ics models. The resulting error estimates can be used in either a feedforward or feedback

configuration. Figure 2.4 shows an example of the indirect-feedforward implementation.

A feedback configuration is also possible, but not shown. Note that integration here is

performed at the navigation solution level of each separate device, the INS and the GPS.

GPS Computed 

Position and Velocity

S
a
te

ll
it

e 
 S

ig
n

a
ls

 

…

Inertial Navigation 

System

V
eh

ic
le

 D
y
n

a
m

ic
s

Initial States

GPS Receiver

Channel 1

Channel 2

Channel n

GPS Receiver

Kalman Filter

GPS derived 
�

and  

∆R measurements

Integration 

Kalman Filter
Error 

Estimates

�Uncorrected Position, Velocity, 

and Attitude

Corrected 

Position, 

Velocity, and 

Attitude

Figure 2.4: Loosely Coupled GPS/INS Integration: Indirect-
Feedforward Implementation.
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Although this integration method typically yields better navigation solutions than

either a stand-alone GPS receiver or INS, it is less accurate than the other two integra-

tion schemes. The degraded accuracy stems from the cascaded filter configuration. In

a Kalman filter implementation, the measurement noise is assumed to be uncorrelated,

Gaussian white noise. Since the measurements are first processed by the GPS filter, the

“measurement noise” entering the second filter is time-correlated and must be modeled in

that filter. This motivates the next discussion, tightly coupled integration.

2.6.2 Tightly-Coupled Integration. The tightly-coupled configuration typically

uses only a single centralized Kalman filter [73]. Removal of the intermediate GPS re-

ceiver Kalman filter reduces measurement noise correlation and enhances performance.

The centralized Kalman filter combines an INS-computed solution with raw GPS measure-

ments of pseudorange and possibly delta-pseudorange, provided by the receiver tracking

loops. Here the integration is being performed at the pseudorange (and possibly delta-

pseudorange) level. One advantage of the tightly-coupled configuration is that integrated

system solutions may be possible when fewer than four satellites are available [85], unlike

the case of GPS-alone operation or loosely-coupled systems. Increased resistance to GPS

signal interference and improved performance in high vehicle dynamics environments are

other advantages. The tightly-coupled system design and implementation are more com-

plicated than a loosely-coupled system, but the payoffs in performance are significant.

Although a feedforward configuration is also possible, only the feedback method is shown

in Figure 2.5.

2.7 Image-Aiding

The focus of this research is on investigating an integrity approach in image-aided

INS. With this in mind, the emphasis is on the image sensor measurements (in the form of

target pixel coordinates) that are provided to a Kalman filter used to integrate the imaging

camera and the INS, and on the impact of faulty measurements on the integrated system.
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This section provides some of the fundamental background on the correlation between

the real world target and its representation as a sensor measurement. Since the primary

concern is on the measurement provided by the imaging system, and not the imaging

process itself, the following assumptions are made:

1. The feature tracker provides measurements in the form of a pair of pixel coordinates

for a tracked target with the measurements provided at a suitable frame rate

2. The camera is calibrated allowing a precise relationship between pixel coordinates

and the corresponding position in the camera frame, with necessary corrections for

lens distortion

3. The association between a tracked target and given pixel coordinate is also known

4. The relationship between the camera mounting and vehicle body frame axes is

known a priori and can be expressed as a direction cosine matrix, Cb
c
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2.8 Image-based Navigation Concepts

The strength of the integration of INS with GPS, based on their complementary

nature, is well-recognized. However, there are situations where GPS signals may not

be available (e.g., signal obstruction or interference) [99]. As a result, an exploration

of alternate navigation systems has brought recent research to focus on the potential of

images provided by platform mounted imaging systems to help navigate. Image-based

navigation can in fact be done without the use of an INS system, but the synergy between

a tightly-coupled INS/image-aided system helps to bound anticipated INS error growth

and provides the potential for a degree of accuracy comparable to that of civilian GPS

positioning.

Image-based navigation may use active (e.g., laser scanners or radar) and/or passive

(e.g., cameras) sensors to image an environment and then process series of image data to

navigate, possibly even in unknown surroundings [48]. The main purpose of image-based

navigation is to determine the position and orientation of the imaging sensor, which is

assumed to have a known position and orientation relative to the platform that is carrying

it [48]. In this research, the emphasis is on the passive camera sensors, since a goal of

military operations is to operate with minimum detection. Additionally, there are currently

many good cameras in use on operational systems. In general terms, a camera takes an

image of a real three-dimensional (3-D) object and projects it onto a two-dimensional

(2-D) image plane.

The complication with this projection is that motion cannot be determined from a

single image [48], and mapping of a 3-D object onto the image plane is a many-to-one

transformation [9]. So, a 3-D point of interest can not be recovered from its 2-D image

unless something more is known about the object point (e.g., the range between the ob-

server and sensor) or if there are images taken from two images in a single epoch that are

a fixed distance apart [9; 119]. To overcome this limitation, image-based navigation is ac-

complished using primarily two fundamental approaches; either processing sequences of

images from a single camera, requiring estimation of the movement/orientation between
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the images, or using multiple cameras in a known relative configuration designed to imi-

tate human vision with parallax aiding depth determination. In both cases, there is higher

uncertainty in the parameter reflecting the distance to the target, than in the relative bear-

ing to the targets. Without the use of additional mapping information (e.g., predefined

target coordinates, active sensor aiding, or surface elevation map), the measurements pro-

vided by the camera system can be considered primarily bearing-only measurements in

the single camera case being considered in this work. These are key considerations in

the image-based tracking methods described later in the section, but first an overview of

perspective projection theory and camera-frame modeling are presented to aid further dis-

cussions.

2.9 Image Projection Theory

The development of the digital camera has proven very valuable in providing nearly

instantaneous image representations of a 3-D world scene. Variations of light are captured

through the camera lens and focused on an image plane to form a 2-D representation of

the scene. Real camera lenses have varying degrees of curvature, which allow a different

fields of view of the scene being observed. However, pronounced curvature creates radial

distortion, negatively affecting the image representation on the image plane. It is often

useful to model of the camera lens as a “thin lens,” or one that causes no radial distortion,

such that light rays passing through the lens travel in straight lines, as shown in Figure 2.6.

Numerous calibration and correction techniques exist to mitigate radial distortion

(see [42; 63; 77; 88; 119; 132]), facilitating modeling using the thin lens for a simplified

interpretation of what is occurring in the image projection. The details are not presented

here, but, fundamentally, the calibration involves using lens parameters, including the

radius of curvature in all directions, to transform the warped or otherwise distorted image

to a planar representation by applying a coordinate correction term to each pixel location.

The following discussions assume that corrections have been applied removing image
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Figure 2.6: Thin lens camera model directing parallel light rays toward the focus, re-
sulting in an image (Figure not to scale) [119].

effects due to the lens. The equation for the thin lens model, based on the parameters

identified in Figure 2.6, is given by the following equation [77]:

1

Z
+

1

z
=

1

f
(2.76)

where f is the fixed camera focal length, and a known intrinsic camera parameter, while

Z and z are the distances to the object of interest and its associated image, respectively.

To further aid in geometry and mathematical modeling, the camera lens aperture

is reduced to a single point, such that all rays passing through the lens converge at this

point, which is called the perspective center [51]. This effect of this reduction is that the

image is projected one focal length behind the lens, such that z = f . Actual devices

can be produced that approximate this reduced aperture model, which is often called the

pinhole camera model. However, such devices suffer from diffraction effects and have

very limited energy penetrating the lens (for projection), thus the pinhole camera is simply

a good approximation of a well-focused imaging system [77].
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In this model, the perspective center then becomes useful as the origin for a 3-D

right-hand, orthogonal reference frame for the camera space, denoted as the camera-frame,

or c-frame . As previously shown Figure 2.6, the image is actually projected behind the

lens, and inverted with respect to the scene. For convenience, a transformation is typically

done to work with a “positive image plane,” which is accomplished by multiplying the

original pixel coordinates by −1 and translating the image focal point from −f to +f (+

being in the direction of the scene) on the optical axis [77]. The resulting representation of

the c-frame and the positive image plane are shown in Figure 2.7. The c-frame coordinate

axes identified by a subscript c and and optical center as the origin, represented by O.
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Figure 2.7: Camera projection model. The modified pinhole cam-
era model places a virtual image plane one focal length in front of
the perspective (or optical) center, eliminating the image inversion
that occurs in the standard pinhole camera model [119].
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Now the relationships between the point source sc = [sc
x, s

c
y, s

c
z]

T (Figure 2.7), and

the perspective projection on the image plane, sproj = [xproj, yproj, f ]T can be developed,

using the notation consistent with [119]. As illustrated in Figure 2.7, there is a geometric

relationship of similar triangles when the rays originate from the camera frame origin. By

the properties of similar triangles, the corresponding angles of the two triangles formed

by these coordinates are the same, and the lines forming the sides of the two triangles are

proportional to each other. The second property is essential to the perspective projection

theory, leading to the camera-centered coordinate system (i.e., the zc axis is aligned with

the optical axis and the perspective center is the focal point) projection equations:

xproj =
f

sc
z

sc
x ; yproj =

f

sc
z

sc
y ; zproj =

f

sc
z

sc
z = f (2.77)

where
f

sc
z

represents a scale factor, using the proportion of the triangle sides along the

least observable parameter of the projection, with sc
z being the distance between the point

source and the perspective center along the zc axis [119]. Letting µ =
f

sc
z

, the relationship

can be rewritten in vector form as:

sproj = µsc (2.78)

The well-focused image is captured via an imaging array aligned with the image

plane [88]. In simple terms, the digital image recording process transforms the light rays

received through the lens into an array of discrete values that can be measured and stored

in a computer accessible format, referenced by pixel coordinates (xpix, ypix). The M ×N

pixel imaging array, with physical dimensions H × W , has a planar coordinate system,

with the origin defined to be the upper left corner, such that the center of uppermost,

leftmost, pixel has the coordinate (1, 1), with pixel values increasing down and to the

right [119]. Figure 2.8 illustrates this relationship.

48



�




¡����

¢����

¡��¡

¢��¡

(1,1) (1,N)

(M,N)(M,1)

�����

���¡

Figure 2.8: Illustration of camera image array of M × N pixels,
with physical dimensions H ×W . Not to scale; image plane posi-
tions on camera exaggerated to emphasize relationship [119].
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Since a projection of the camera frame onto the image plane assumes that the origin

would be centered in the plane, at the optical center (in the calibrated case), a transfor-

mation must be made between the pixel coordinates and the projection coordinates. The

projected coordinates are scaled by the pixel size and translated to the pixel coordinate

frame axes, as described by [119]:

spix =



−M

H
0 0

0
N

W
0


 sproj +




M + 1

2

N + 1

2


 (2.79)

Combining Equations (2.78) and (2.79) produces a linear transformation from the

camera frame to the pixel frame:

spix = µ




−M

H
0

M + 1

2f

0
N

W

N + 1

2f

0 0
1

f




sc (2.80)

= µTpix
c sc (2.81)

where Tpix
c is the homogeneous transformation matrix from camera frame to pixel

frame [119]. This matrix defines the interior orientation, or relationship between the

camera frame and image plane [48], since all of the parameters in Tpix
c are functions of

the particular camera used. If the focal length is known and fixed, it can be normalized to

1, resulting in a system corresponding to an ideal pinhole camera, with the image plane

positioned in front of the perspective center, at f = 1. The scale factor µ then simply

becomes
1

sc
z

.
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The spix vector is the homogeneous pixel coordinate vector that represents the mea-

surements provided by the camera system. The matrix Tpix
c is square and full-rank, and is

thus invertible, with the inverse represented as (Tpix
c )

−1
= Tc

pix. As a result, if the pixel

coordinates, spix, are measured, the camera frame coordinate can be determined by [88]:

sc =
1

µ
Tc

pixs
pix (2.82)

or for the vector sc normalized by its z-component and f = 1 [122]:

sc = Tc
pixs

pix (2.83)

The optical measurements are essentially limited to bearings-only measurements

due to the loss of scale when the range along the z-component axis is unknown, which is

the case in single camera (monocular) imaging without aiding of an active ranging sensor

or another means to determine depth of view, such as depth from focus or use of known

object sizes. However, any observables can aid navigation, as they provide a line-of-sight

representing a geometric locus of all points consistent with a given measurement [48].

Having described the relationship of the image projection in the camera frame (in-

terior orientation), the full geometry of the relative position vectors (exterior orientation)

in a navigation frame can be visualized. Table 2.1 describes the parameters of interest

in the navigation frame, with the associated vectors shown in Figure 2.9. The geometric

relationship is then described by:

tn
m = sn

m + dn + pn

sn
ptm

∆
= tn

m − pn = sn
m + dn (2.84)

sn
ptm

= Cn
b C

b
cs

c
m + Cn

b d
b = Cn

b

(
Cb

cs
c
m + db

)
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Table 2.1: Parameter Definitions

Parameter Description

pn Vehicle position in navigation frame (NED)

vn Vehicle velocity in navigation frame (NED)

Cn
b Vehicle body-to-navigation frame DCM

sn
m Line-of-sight vector from the camera to the mth target

(vector for each landmark currently tracked)

tn
m Location of the mth target (vector for each landmark currently tracked)

db IMU-to-Camera leverarm offset

Cb
c Camera-to-body frame DCM
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Figure 2.9: Vector geometry in the navigation reference frame

(based on [119].)
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Recalling that direction cosine matrices, Cα
β , are unitary, with the inverse equal to

the transpose ( i.e. ,
(
Cα

β

)−1
=

(
Cα

β

)T
= Cβ

α), Equation (2.84) can be rewritten in terms

of sc
m, matching the equation given by [122]:

sc
m = Cc

bC
b
n (tn

m − pn)−Cc
bd

b (2.85)

or using the shorthand notation introduced in Equation (2.84):

sc
m = Cc

bC
b
n

(
sn
ptm

)−Cc
bd

b (2.86)

This section developed some necessary background in projection theory, and how

pixel coordinates represent a target sighted by the camera. Combined with ability to trans-

form between different reference frames to mathematically describe relative positions of

the vehicle, sensor (camera), and target, the potential of image-aiding is clear. The interior

orientation is a function of the camera sensor systems and calibration techniques, and is

considered to be a priori knowledge. The exterior orientation is motion dependent, and

a function three translations in position and three rotations in attitude, values which are

better constrained in the estimate of motion by the integration of an INS. The question of

how certain pixel locations are selected as a potential representation of desired targets is

yet to be discussed. To the human eye, points of interest in a captured image would be

easy to identify and associate between multiple images. However, with no human in the

tracking loop, as is desired for most navigation system, it is necessary to automatically

(via image/data processing) identify potential targets from the image and determine target

consistency between images. Image feature detection and tracking methods are available

to perform these tasks.

2.10 Feature Tracking

The preceding material described the projection of real-world 3-D objects of interest

(also referred to as targets) into a 2-D image representation of the observed scene. Loca-
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tions of the 3-D objects in the users real-world frame is often called a map, and actual map

coordinates may or may not be known a priori. As mentioned, a single image does not

provide information regarding motion of objects in the view, or, from an alternate point

of view, a single image does not provide information about camera movement against sta-

tionary targets; the latter case is the perspective of image-based navigation. Therefore,

multiple images from different vantage points, i.e., image sequences from a single camera

or synchronous images from multiple cameras, must be used to estimate this motion. The

use of multiple images requires “feature correspondence,” or matching representations of

observed objects from one image to another. So, an image-based navigation system must

have the ability to identify objects of interest and correlate them between images in order

to produce sufficient information to infer the motion that occurred.

This process is often called feature tracking in summary, but consists of a number

of steps including feature detection, feature extraction, and feature tracking stages. Fea-

ture tracking is a very broad and deep research area unto itself, as it enables great number

of imaging applications, including basic image registration, augmented reality, computer

graphics interfacing, and medical system imaging, to name a few. Feature tracking is

also critical to the INS/image-aiding navigation system that supports this research, but is

assumed to take place prior to the point of interest in this study, which is the integrity

algorithm based on the measurements provided to the integration filter. Many feature

tracking approaches have been proposed in literature, dating as far back as 1959 [41],

with advantages and disadvantages to each based on specific applications and assump-

tions. Therefore, the following discussion is not all encompassing, but presents a general

characterization of selected feature tracking concepts that have been successfully applied

to image-aided navigation; for additional details on feature tracking, the reader is referred

to [22; 41; 43; 48; 63; 75; 76; 77; 83; 97; 113; 119; 133].

Images formed by the imaging array are representations of the observed scene, de-

veloped as a function of light passing through the lens and accumulating at each pixel

location in the array. Each 2-D pixel coordinate (x, y) in the array has a value correspond-

54



ing to the quantity of light accumulated, or technically, the quantization of the number

photons arriving, at the time of the image capture. This intensity value is represented by

i(x, y), with the total image denoted as Ik, where k is the index of the image in a sequence.

A very diverse scene would be expected to have a large range of intensity values across

the entire image, while a nondescript image, like a plain white wall, would have similar

intensity values throughout the image, with local variations primarily attributed to noise

or texture. This disparity in the potential captured scenes is a fundamental factor in the

image correspondence problem and potential source of error in measurements provided to

the navigation system.

Feature-based correspondence dissects the images into prominent regions, or fea-

tures, that can be quantified through image processing techniques. Ideal characteristics

for features include [48]:

Significance: The feature significantly differs from its surroundings

Interpretability: The feature supports interpretation of the image

Rarity: The feature is unique from others

Invariance: The feature is invariant under geometric and temporal changes

Stability: The feature has some immunity to image disturbances

Quality: The feature position can be determined without bias

The simplest features in an image would be the individual pixel values themselves.

However, summarizing [113], the inherent difficulty in determining the displacement of a

point between one image and another is that a single pixel cannot not be tracked, unless it

is singularly distinct from all of its neighboring pixels, which is nearly impossible when

considering image distortion and intensity changes due to camera motion and/or image

noise [120]. As a result, characteristic groups of pixels are examined, instead of a more

volatile single pixel. These groups, defined in subregions, W (x̄, ȳ) ⊂ I , of the image, can
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then be used to identify features, considering the above criteria, where x̄ and ȳ are vectors

centered on (x, y) coordinates of interest.

For the image-aided navigation problem, using features strictly based on individual

pixel intensities does not often provide the required significance and rarity, even when

subregions are used. Therefore, additional image processing is done to create features that

are more discernible and trackable image to image. Examining not only the pixel inten-

sity, but also changes in pixel intensities in the image, leads to more salient features like

edges or corners, which are simple descriptions of what the feature represents in the local

region of interest. As will be shown, these features can then potentially be characterized as

symbolic vector representations, or descriptors, of image regions, resulting in significant

data reduction [48]. Use of these features can also reduce ambiguity and time required

for correspondence processing compared to that of intensity-based features, as the num-

ber of potential mismatches between features is decreased due to increased significance.

By tracking the relationship between the image frame center and selected features of the

overall image, more information regarding the relative rotational and translational motion

between the camera and the observed scene can be derived. Table 2.2 lists a few of the

these feature detectors, and names commonly used to reference the methods in literature.

There is a noticeable overlap in the detector types, illustrating the sometimes ambiguous

differences between them.

Table 2.2: Examples of Feature Detectors

Feature Detector Type Common Reference Names

Edge Canny [21], Sobel (in [56]), Prewitt (in [56]),

Harris [46], Harris-Stephens (or Plessey) [46]

Shi & Tomasi [105]

Corner Harris-Stephens (or Plessey) [46], Features from

Accelerated Segment Test (FAST) [101], Shi & Tomasi [105],

Laplacian of Gaussian (LoG) (in [41]),

Difference of Gaussian (DoG) (in [76])
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Edge detection is of fundamental importance in image analysis due to its ability to

characterize object boundaries and segment the scene [56]. An edge in an image is often

readily discernible to the human eye viewing an image, as there is there is a recogniz-

able structure created by a contrast between pixel intensities that separates two possibly

very similar local regions in an image, forming a straight line. Figure 2.10 provides an

illustration, where a photograph of a box has been taken in fairly close proximity to a sim-

ilarly toned background. The figure also includes a close up of a selected edge line and a

three-dimensional plot of the grayscale values at the selected pixel locations showing the

changes in intensity.
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Figure 2.10: Example of Edge of Object in View.
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This simple demonstration illustrates how information stored in an image is avail-

able for translation into metrics by which features may be identified, in numerical terms.

It is worth noting that the magnitude of the edge in the lower left plot is enhanced by

the fact that ambient light strikes the box on the righthand side, giving greater contrast

to the grayscale values along this edge. Under different lighting conditions, transition in

the magnitude of the grayscale levels would still be observable, but not as distinct. This

effect was intentionally included to show how perspective changes may influence feature

tracking algorithms, for better or for worse, depending on the conditions encountered.

In actual applications, feature detectors typically involve gradient or Laplacian op-

erators to detect abrupt changes in the values at the different pixel coordinates. In either

case, the image is generally smoothed using a Gaussian filter which weights pixel values

at its center more strongly than at its boundaries. This reduces granularity caused by low

level noise by smoothing the image [41]. The mathematics presented in this section are

presented in continuous form for simplicity. In reality, the individual pixels are discrete

samples of the observed scene, and are digitally processed using discrete sampling of the

continuous signal. The Gaussian filter function is given by [76]:

g(x, y, σ) =
1

2πσ2
e−(x2 + y2)/2σ2

(2.87)

which is especially convenient for processing the 2-D image in each of the 1-D directions

using the separability of the Gaussian (assuming isotropic, or σ = σx = σy):

g(x, y, σ) = g(x, σ)g(y, σ) =
1√
2πσ

e−x2/2σ2 1√
2πσ

e−y2/2σ2
(2.88)

The convolution of the image with the Gaussian kernel of a chosen standard devia-

tion, σ, results in the filtered function `(x, y, σ), defined by [76] as the scale space:
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`(x, y, σ) = g(x, y, σ) ∗ i(x, y) (2.89)

Edge feature detection is accomplished by taking computing the image gradient

vector ∇`(x, y) = [`x, `y]
T , where:

`x =
∂`(x, y)

∂x
, `y =

∂`(x, y)

∂y
(2.90)

and evaluating η = ‖∇`(x, y)‖2, for σ > 0 [77]. If η exceeds a predetermined threshold τ ,

for τ > 0, then the given pixel is on an edge and can be selected for tracking. Figure 2.11

shows the impact of the changing σ values on the presentation of the image gradient. It

should be pointed out that differentiation is linear and shift invariant, and that smoothing

with the Gaussian function and then differentiating is equivalent to convolving the image

with the derivative of the smoothing function [41].

Gradient Magnitude for Gaussian Filter Using σ = 0.5 Gradient Magnitude for Gaussian Filter Using σ = 1

Gradient Magnitude for Gaussian Filter Using σ = 2 Gradient Magnitude for Gaussian Filter Using σ = 4

Figure 2.11: Illustration of Gradient Changes as Function of

Gaussian Filter σ Value.
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Corner feature detection extends the concept of edge detection by evaluating gradi-

ent behavior within the window, W . Corner feature detection is attributed to [46], and is

represented in various forms. A characteristic matrix, G, is formed by the products of the

gradients in both the x and y directions [41]:

G =
∑
W

(∇`)(∇`)T =




∑
W `2

x

∑
W `x`y

∑
W `y`x

∑
W `2

y


 (2.91)

Conceptually, in a window with little variation in image intensity, the eigenvalues

of G will be small, reflecting the lack of discernible gradients. However, in areas with

reasonable contrast, both eigenvalues should be large, resulting from 2-D contributions

of gradient changes from the pixels in the window. A corner feature is detected if the

smallest eigenvalue of G [77; 105], or alternatively, if the ratio of the maximum eigenvalue

to the minimum eigenvalue [26], is greater than some predetermined threshold, τ ∈ R.

Other variations, including the well-known Harris corner detector [46], use the following

quantity for evaluation against a threshold [46; 77; 119]:

C(G) = det(G) + k
[
trace2(G)

]
(2.92)

where k is a tuning parameter used to provide discrimination against high contrast pixel

step edges [133]. Small values of k favor detection of corner features, while increasing

the value of k decreases the requirement of significant gradient variation in more than one

direction [77].

One problem with all differential techniques is that they may fail if the perceived

transition of intensity is bigger than a few pixels [77]. To counter this problem, a coarse-

to-fine approach may be used, by varying the σ parameter and building a pyramid of

smoothed and sub-sampled images. This “multi-scale” approach replicates changing the

focus of the lens to bring out finer detail in the smoothed images, and is foundational

to the scale-invariant feature tracking (SIFT) method proposed by [75; 76], which has
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become a successful and widely used approach to feature tracking [22; 37; 43; 47; 57;

61; 64; 75; 104; 109; 111; 115; 119]. SIFT is growing in popularity over the well-known

Kanade-Lucas-Tomasi (KLT) [105; 113] tracking algorithm in applications where larger

frame-to-frame differences between images are observed, as is likely the case of an aircraft

mounted camera, unless an exceedingly high frame rate is used.

Figure 2.11 illustrated how the distinctiveness of the image gradient changed with

variation in the σ parameter of the Gaussian smoothing function, and showed that a gra-

dient feature may or may not be observable under different choices of σ. This concept is

used in SIFT in employing a difference-of-Gaussian (DoG) technique to produce features

and descriptors that are more robust to changes in illumination, image noise, rotation,

scaling and viewpoint, all of which are critical considerations for image-aided navigation,

especially for airborne platforms. There are four basic detection stages in SIFT [61; 76]:

1. Scale-space extrema detection (selection)

2. Keypoint localization

3. Orientation assignment

4. Generation of keypoint descriptors

In the first stage, key feature locations are detected using a DoG function, D(x, y, σ),

based on Equation (2.89), to construct image pyramids of different σ scale values and a

constant multiplicative factor k [76]:

D(x, y, σ) = `(x, y, kσ)− `(x, y, σ) (2.93)

with k = 21/s, s ∈ Z, producing s + 3 images for each pyramid level. A common choice

of values is s = 2 such that k =
√

2 [75; 76; 119]. A key feature search is conducted over

all scales and pixel locations, in 3× 3 grids, to determine the minima and maxima values

of D(x, y, σ), with a candidate keypoint selected only if the value is smaller or larger than
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the eight closest neighbors in the current image and the nine neighbors in both the images

at the scale above and below the current scale.

The second stage involves testing the stability of these candidate keypoints. Key-

points exhibiting low contrast with the surrounding regions are rejected, as well as those

failing to meet a threshold, η, criteria comparable to that described in Equation (2.92).

Specifically, the following test is described [76]:

trace2(G)

det(G)
<

(η + 1)2

η
(2.94)

In stage three, image gradient magnitudes and orientations are sampled around the

selected keypoint using a circular Gaussian weighting function based on the scale for the

chosen keypoint. An orientation histogram is then constructed over eight gradient an-

gles in [−π, π], with entries weighted by the gradient magnitude and Gaussian weighting

factor, which is multiplicative factor of the scale. This process functionally reduces the

dimensionality of the region around the keypoint and improves rotational invariance. The

final stage is the construction of feature vectors, z∗j , which is done for each keypoint, j, by

augmenting the 4 × 1 pose vector, zpose
j with an (m ×m× n) × 1 normalized descriptor

vector, zobject
j , to form [119]:

z∗j =




zpose
j

. . .

zobject
j


 (2.95)

with the zpose
j vector given by [119]:
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zpose
j =




xpose
j

ypose
j

σj

θj




(2.96)

where (xpose
j , ypose

j ) are the pixel coordinates of the feature keypoint, σj is the scale, and

θj is the primary orientation, all for the jth keypoint. The term pose describes elements

related to position and orientation of an object, while object refers to the object itself,

which is ideally recognizable regardless of pose. The descriptor vector dimensions are

determined from the histogram dimensions, where m×m is the histogram array size and

n is the number of orientation bins in each array element. Figure 2.12 shows an example

of the histogram relationship for the 2× 2× 8 = 32 case. Analysis by [76], suggests that

the 4 × 4 × 8 = 128 structure commonly used performs best. This feature description is

highly desirable as it contains separable pose and object information, as denoted by the

superscripts in Equation (2.95), with complete independence being the ideal [119].
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��
Figure 2.12: Illustration of Relationship between Image Gradient

and Resultant Keypoint Descriptors [76].
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The concept of SIFT has been extended in recent work by [61] and [83] to further

invariance to affine image motion. In [61], the method applies principle component anal-

ysis (PCA) to the normalized image subregions instead of using the smoothed, weighted

histograms of SIFT. PCA-SIFT uses the same keypoints as SIFT, and then extracts a large

image patch (on the order of 41× 41) in order to [61]:

1. Pre-compute an eigenspace to express the gradient images of image subregions

2. Compute the local gradients of the subregions

3. Project the gradient image vector using the eigenspace to derive a compact feature

vector

The result is smaller descriptor vectors, simplifying and reducing computational

burden in feature processing. The process described by [83] is known as gradient location-

orientation histogram (GLOH) and is designed to improve robustness and distinctiveness

of the SIFT descriptor. In this method, the SIFT descriptor is computed in log-polar

coordinates on a grid with three radial lengths and eight angular envelopes. The gradient

orientations are quantized into 16 bins, resulting in a 272 bin histogram, as compared to the

128 of SIFT. This descriptor is then reduced down to 128 using the largest 128 eigenvalues

determined through PCA.

Once features are extracted, feature matching done to establish correspondence be-

tween images. Feature matching can be accomplished through a number of different ways,

strongly based on pattern recognition and classification techniques. Two particular meth-

ods are consistently used in the approaches mentioned in this section, either a normalized

cross-correlation or a Euclidian distance type measure. In general terms, the normalized

cross-correlation (NCC) relationship is described by [64]:

α(a,b) =

∑
i(ai − µa)(bi − µb)∑

i(ai − µa)2
∑

i(bi − µb)2
(2.97)
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where a and b are feature vectors made up of i elements and having a mean µ. Values

of α above a predetermined threshold are accepted as matches. The Euclidean distance

measure compares the similarity between the feature vectors, and is given by [82]:

D(a,b) = ‖a− b‖ =
√

(a− b)T (a− b) (2.98)

When a covariance relationship is known, the covariance matrix, P, can be used to weight

the distance measures, as shown [82]:

D(a,b) =
√

(a− b)TP−1(a− b) (2.99)

A useful extension of the weighted form is called the Mahalanobis distance, and is given

by [77]:

D(a, µa) =
√

(a− µa)TP−1(a− µa) (2.100)

where similarity is evaluated based on the feature vector, a, and its mean, µa. This associa-

tion is used in inertial and image sensor fusion algorithms described in [119], for example,

where a represents a feature vector taken at a measurement time and µa is a Kalman filter

prediction of the measurement.

The minimum discrepancy, distance, or cost between matched features from differ-

ent images occurs when the features have exactly the same intensity and are aligned with

exactly the same center and orientation. However, in real applications, this ideal is almost

never met. Intensity variations have already been discussed. What must now be consid-

ered is that in the rigid-body motion presented in the image-aided navigation problem,

observations made in an image, Ik+j , k, j ∈ Z, may have undergone rotational and/or

translational changes with respect to a previous image, Ik.
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While SIFT and related feature tracking algorithms do not necessarily assume a

priori information about the camera views, earlier feature matching techniques require

a coplanarity assumption that is dependent on the camera views, and is made tractable

based on the concept of epipolar geometry. Epipolar geometry defines a clear relationship

between image observations made of the same real-world 3-D point seen in two different

camera views. This relationship is shown in Figure 2.13, where a baseline connects the

origin position of the camera frame, Oi, in two different instances, defining the epipoles,

ei, where this baseline intersects the respective images Ii. Remaining consistent with

previous notation, the transformation between frames, i = a 7−→ b, uses a rotation matrix

denoted as Cb
a, and a translation vector is denoted as pb

ba with a condition that ||p|| 6= 0.

Figure 2.13: Epipolar geometry between two images viewing
same real-world point from changed camera positions.
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The epipolar geometry establishes a constraint on the area where the target could

actually be located and still be observed in both camera frames at the designated coor-

dinates. The lines, li, are epipolar lines representing projections of the target rays (the

line from each frame center to the target) from the opposite perspective, and provide a

baseline region for where projections of the target should lie. For image correspondence,

the equation of the epipolar constraint (assuming calibrated camera) is found in [74] and

given using notation consistent with [123]:

(sb
m)T [pb

ba×]Cb
a(s

a
m) = 0 (2.101)

where [pb
ba×] is a skew symmetric matrix. The quantity [pb

ba×]Cb
a is often denoted as

the 3 × 3 essential matrix, E. In image aiding processes that do not incorporate IMU

information, it is possible to use recursive algorithms (e.g., random consensus sample [40]

or an “eight point algorithm” [74]) to estimate motion from E. For example, the eight

point algorithm process requires at least eight image correspondences, and uses singular

value decomposition to solve for the rotation matrix and translation vector (for details

see [77]). In terms of the epipolar geometry concept, a great advantage results from IMU

integration, which can provide information about the rotation and translation between

image times, precluding the necessity of solving the epipolar constraint through iteration.

In a complimentary configuration, IMU/image aiding not only increase robustness and

computational efficiency with the IMU helping provide the camera orientation, but also

with the image system helping correct errors in the inertial system [128].

Before describing specifics of integrated techniques, it should be pointed out that

feature matching errors can and will occur, regardless of the feature tracking technique

used. Two primary sources of error are “bad locations” and false matches [133]. Bad

locations are in fact incorrect pixel positions resulting from poor localization of the points.

False matches occur when a features between images are incorrectly correlated. These

incorrect features are commonly called outliers, and although the thresholding techniques
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described earlier can help reduce outliers, these errors are still quite possible. There is a

fundamental trade-off in establishing a threshold; if it is set too low false matches may

be passed, and if it is set too high, there not be enough confirmed matches to generate

a solution. Incorporation of outliers into the estimation problem can corrupt the overall

position estimation process, whether using an integrated system or not. In an integrated

scheme, these errors are propagated through to the navigation filter and are motivating

factors for the development of an image-aided integrity method.

2.11 INS/Image-Aiding Using Landmark States

Simultaneous Localization and Mapping (SLAM) is an image-based navigation pro-

cess conceptualized about 20 years ago to solve the dual problem of building a consistent

map of unknown environment while simultaneously determining vehicle position within

the environment using probabilistic methods [34]. Initially, the vehicle was a robot, set to

navigate in a nearly fixed plane and limited area environment. SLAM was accomplished

by surveying and then revisiting observed landmarks in order to refine the estimated po-

sition of both the landmark and the position. Image-only SLAM has been well-studied,

but continues to evolve. Over recent years, SLAM, or “SLAM-like” methods have been

proposed for sensor fusion in air vehicle navigation in 3-D space and over broad areas,

where revisitation of landmarks may or may not occur. In these cases, the emphasis is not

on determining an absolute location, but rather relative positioning, which is particularly

useful for aiding an INS.

INS/image-aided navigation, has been the subject of much recent research [5; 35;

51; 59; 86; 88; 115; 119]. This dissertation will employ methodology and notational con-

vention described by Veth in [119; 121; 122; 123] and follow-on work by [88], assuming

stationary landmarks. The approach by Veth represents the key attributes of IMU/image-

aided algorithms described in other literature, and also employs stochastic feature pre-

diction after SIFT feature extraction to reduce the feature correspondence search space,

facilitate real-time implementation, and further decrease the possibility of false matches.
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As with the GPS discussion earlier, the focus in the investigation of integrity is in

the measurements, thus only the relevant details related to the measurement models are

presented here. Although not explicitly shown by the equations that follow, estimation

of the depth parameter for unknown landmarks cannot be made until at least two images

have been recorded in the monocular vision case being studied. Also, additional sensors

or digital elevation data, such as a baro altimeter or statistical terrain model, respectively,

could augment the INS/image-aided system for better height estimation.

The formulation uses an extended Kalman filter with an error state vector based on

errors present in the parameters described earlier in Table 2.1:

δx̂ =
[
(δp̂n)T (δv̂n)T (ψ̂)T (δâb)T (δb̂b)T (δt̂n

1 )T . . . (δt̂n
N)T

]T

(2.102)

where N is the number of landmarks tracked. The perturbation error states are defined

as [122]:

δpn = p̃n − pn

δvn = ṽn − vn

C̃n
b = (I− [ψ×])Cn

b

δbb = b̃b − bb (2.103)

δab = ãb − ab

δtn
m = t̃n

m − tn
m

with the tilde, (̃·), representing the nominal trajectory. The error state vector can be defined

more compactly letting the first five error states be denoted as δx̂v, a 15× 1 vector for the
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vehicle error states of interest, and the final N error states denoted as δx̂t, a 3N × 1 vector

for the total number of landmark error states, such that:

δx̂ =


(δp̂n)T (δv̂n)T (ψ̂)T (δâb)T (δb̂b)T

︸ ︷︷ ︸
(δx̂v)

T

(δt̂n
1 )T . . . (δt̂n

N)T

︸ ︷︷ ︸
(δx̂t)

T




T

(2.104)

δx̂ =


 δx̂v

δx̂t


 (2.105)

with N actually varying over time as landmarks come into and leave the field of view.

There must be a practical maximum on the number of landmarks tracked at any given

time in order to maintain computational efficiency. Details of this process, called track

maintenance, can be found in [119]. The measurement for the mth feature is derived from

the relationship first shown in Equation (2.83), with spix replaced by z(ti) [122]:

zm(ti) = Tpix
c sc

m(ti) + v(ti) (2.106)

where sc
m(ti) is the homogeneous form of Equation (4.2), and v(ti) is independent additive

white Gaussian noise of zero mean and covariance R. The Jacobian of the nonlinear mea-

surement function, h[x(ti)] = Tpix
c sc

m(ti), is used to describe the linearized observation

matrix [122]:

H =

[
∂h

∂pn
03×3

∂h

∂ψ
03×6

∂h

∂tn
1

. . .
∂h

∂tn
N

]
(2.107)

where the non-zero elements of H are the partial derivatives given by the following equa-

tions based on [119], with µ =
1

sc
mz

and β = [0 0 1]:
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∂h

∂pn
= µTpix

c

(
sc
mβCc

bC
b
n −Cc

bC
b
n

)
(2.108)

∂h

∂ψ
= µTpix

c

(
∂sc

m

∂ψ
− sc

mβ
∂sc

m

∂ψ

)
(2.109)

where

∂sc
m

∂ψ
= −Cc

bC
b
n [(tn − pn)×] (2.110)

and finally

∂h

∂tn
m

= µTpix
c

(
Cc

bC
b
n − (sc

mβCc
bC

b
n)

)
(2.111)

For the integrity problem, the significance of this formulation is in the structure of

the observation matrix compared to the GPS case. In the GPS case, information is known

about the location of the satellite relative to the vehicle, which allows the measurement to

be modeled as a pseudorange resulting in one H matrix row for each measurement. How-

ever, in the case of image aiding, the measurements are pixel pairs, resulting in multiple

rows per measurement in the observation matrix (2-D on the pixel plane or 3-D homoge-

nous in the camera frame). Another consideration is in the correlation between the INS

and the vision system due to the mutual aiding. Using simplified notation based on the

vehicle and target state relationship shown in Equation (2.104), let:

Hxv =
∂h

∂xv

(2.112)

and

Hxt =
∂h

∂xt

(2.113)
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such that H =

[
Hxv

... Hxt

]
. The error covariance matrix is defined as:

P = E{δx̂δx̂T} = E






 δx̂v

δx̂t





 δx̂v

δx̂t




T




(2.114)

with the resultant covariance submatrices denoted:

P =


 Pδx̂vδx̂v Pδx̂vδx̂t

Pδx̂tδx̂v Pδx̂tδx̂t


 (2.115)

The pixel location uncertainty for mth measurement (i.e. , δx̂t = δt̂n
m) the can then

be described by:

Pδzδz = HxvPδx̂vδx̂vH
T
xv

+ HxvPδx̂vδx̂tH
T
xt

+ HxtPδx̂tδx̂vH
T
xv

+ HxtPδx̂tδx̂tH
T
xt

+ R

(2.116)

This covariance represents a circular uncertainty over the measurements, and pro-

jection on to the 2-D image plane defines the region for some given number of standard

deviations that the pixel measurement should fall within with high probability. Both [26]

and [119] use this as a gating region for feature matching. Knowledge of this constraint in

the feature correspondence search is expected to be known by the integrity algorithm.

2.12 INS/Image-Aiding Without Landmark States

Research by [28] and [87] represents two distinct approaches to image-aiding with-

out the inclusion of the landmark positions in the state vector. Like methods in the previous

discussion, these approaches assume that the primary purpose of the aiding algorithm is

to limit INS error growth in relative navigation rather than maintain and update a map
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of an area. Both methods are described using a single, calibrated camera vision system,

although extension to multiple cameras is possible.

The approach by [28] employs the extended Kalman filter estimating only the vehi-

cle error states related to position, velocity, and accelerometer bias and scale. The focus

of this approach is on estimating and removing translation error in the position estimate

through the use of stochastic epipolar constraints. The authors assume that the selected

gyroscopes can provide reasonable angular accuracy for several minutes, allowing gyro

compensation for camera rotation, while avoiding use of the image data to improve the gy-

ros. This assumption seemingly precludes the use of low-cost, lower quality INS, which

has been shown to be one potential advantage of image-aiding [119]. However, the as-

sumed accuracy of gyroscopes does reduce the complexity of the overall filter design by

eliminating the attitude error states.

In [28], images are recorded from an initial time, ta, to some subsequent time, tb.

The images are rotation-compensated using data from the gyros, prior to passing through

a Harris corner detector [46]. The correlation process is accomplished using normalized

cross-correlation like that earlier described by Equation (2.97). If a feature is persistent

above a predetermined threshold, an observation vector for the mth feature, zm(ti), is

stored in a database along with the coordinates of the feature. The basic epipolar geometry

is the same as that previously shown in Figure 2.13, but in [28], the constraint equation is

now given based on the plane formed by a pair of observation vectors pointing at the same

target and the translation between them:

(zm(ta)× zm(tb)) · pba = 0 (2.117)

where zm(ti) has replaced the s-vector terms and pba represents the translation occurring

between times ta and tb. The form of this constraint equation is said to be coordinate-

independent [41]. The cross product of the zm(ti) terms results in a vector perfectly

orthogonal to the translation vector under ideal conditions, satisfying the constraint equa-
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tion. However, errors in the vectors violate the constraint, thereby creating an observable

residual error. Thus, the authors define a residual model of the form [28]:

r =
(
I− exe

T
x

)
eze

T
z pba

?
= 0 (2.118)

where

ex ≡ pba

‖pba‖

ez ≡ (zm(ta)× zm(tb))

‖(zm(ta)× zm(tb))‖

Although an explicit derivation of the residual model is not readily seen in ei-

ther [28] or the related [27], this model is developed beginning with the basic definition of

the vector difference of the cross product term and the projection of that vector onto the

translation vector. This linear, least squares approach leads to the observation matrix, H,

used in the Kalman filter implementation [28]:

H =

[
rT

‖r‖ 0

]
(2.119)

This method is not without complications, recognizing that numerical instability

may result if ‖r‖ or the denominators in ex or ez approach zero. However, a small resid-

ual value in the first case is an indication that the filter is performing well, and that a

measurement should be included. As a result, the H matrix is redefined as [28]:

H =
[
eT

z 0
]

(2.120)

An empirically derived formula for the measurement variance is a notable element

of [28]:

σ2 ≈ p2
baσ

2
a

‖(zm(ta)× zm(tb))‖2 + σ2
n (2.121)
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where (·) indicates that the value contains error, σa is the long-term deviation of the track-

ing algorithm, and σn is the standard deviation value for noise. The σn term is a nominal

value, added to ensure that the overall variance is never zero, avoiding potential numerical

problems in matrix inversion. Although not statistically rigorous, and clearly dependent

on implementation elements such as imaging hardware, the tracking algorithm, vehicle

trajectory, and observed scene, an explicit formulation for measurement variance is not

normally shown in other papers cited in this dissertation. This method by [28] is still

fundamentally based on observations from a pair of images, although the images may

not necessarily be consecutive. The next method [87] proposes to use multiple images in

performing image-aided updates.

The research by [87] uses landmark measurements to impose geometric constraints

between multiple camera poses over time. The multiple image tracking requires camera

measurements to be grouped per tracked feature, as opposed to aiding methods that apply

constraints using only pairs of images and grouping camera measurements by camera

pose, like that just described.

The vehicle error state vector, δx̂v, structure for the Kalman filter is equivalent to

that of [119], except that attitude is expressed in quaternions and the chosen reference

frame is ECEF versus NED. The transformations between the image frame, camera frame,

and real-world frame are also consistent with the equation structure shown in Section 2.9,

noting that an additional DCM would be required to relate the ECEF and NED frames.

The profound difference between the methods by [119] and [87] is that, in the latter, the

error state vector is not augmented with target related states, δx̂t, but rather states related

to camera pose and attitude:

δx̂c =
[
(δψ̂c1)

T (δp̂e
c1

)T (δψ̂c2)
T (δp̂e

c2
)T . . . (δψ̂cn

)T (δp̂e
cn

)T
]T

(2.122)
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where the subscript Ci indicates the ith camera pose, for i = 1, 2, . . . , Nmax, with Nmax

being a predetermined limit on the number of poses that can be used in the augmentation.

The attitude error is described in three degrees-of-freedom [87]. The augmented error

state vector is then represented by:

δx̂ =


 δx̂v

δx̂c


 (2.123)

The IMU measurements are processed when they become available and are used to

propagate the extended Kalman filter. The camera pose estimate is the sum of the IMU

estimated position and known IMU-to-camera offset expressed in the ECEF frame. Each

time an image is recorded, the current estimated camera pose information is added to the

state vector, up to Nmax. If the limit on the number of camera poses has been reached,

older poses are replaced, but not before processing the feature observations. Since data

is grouped in by feature, the image coordinates and camera frame feature position are

indexed using the mth feature in the ith camera pose. Using the notation similar to that

developed back in Section 2.9, the image measurement model is expressed as:

z
(m)
i =

1

sci
zj

πTpix
c sci

m + n
(m)
i (2.124)

where π = [I2×2 02×1]. The indexed camera position is given by:

sci
m = Cci

b Cb
e

(
te
m − pe

ci

)
(2.125)

If the target coordinates, te
m, are not known a priori, they are estimated using a

least-squares minimization based on the measurements for a specific feature and the filter

estimates of the camera poses at the corresponding times [87]. If the target coordinates

are known, the image measurements can be processed as soon as they are available. The
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H matrix rows formed for each i,m pair of indices is remarkably similar to that shown

in Equation (2.107), because the derivative of h with respect to the target, is found to be−1

times the derivative of h with respect to the camera pose. The fundamental contribution

of this approach is the delayed linearization of the measurements, which makes it more

robust to linearization errors.

2.13 GPS Integrity Methods

This section describes the evolution of GPS integrity, beginning with key methods

that formed the initial foundation in this field and moving toward the state-of-the-art in

GPS integrity. The fundamental assumption in GPS integrity is that the number of mea-

surements available is greater than the number of unknowns to determine, which in the

case of GPS is normally four – three position states and one clock bias state. With regard

to fault detection algorithms, a single redundant satellite measurement may be sufficient

to detect a failure; however, mere detection is insufficient for integrity monitoring. In-

tegrity requires at a minimum fault detection and isolation (FDI) capability, and in RNP

more likely requires fault detection and exclusion (FDE) capability. According to [48],

FDI requires at least two redundant satellites, with no more than one of the total number

of satellites at any one time being affected by an undetected failure, while FDE requires

even more redundant satellites under the same failure condition.

The detection of more than one simultaneous failure is a difficult analytical prob-

lem [25], and is currently a high interest research area [32; 69; 131], even though the

probability of failure on multiple GPS satellites currently remains very low under normal

(non-interference and unobstructed) conditions. However, this probability of failure is a

function of the magnitude of error a navigation application can tolerate. In general, as

the required degree of navigation accuracy is increased (i.e., the magnitude of error an

application can tolerate is reduced), the probability of multiple failures is also expected to

increase.
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In [129], the authors categorize GPS integrity methods, first noting that primary

GPS integrity methods can be categorized in two ways: (1) Snapshot methods, and (2)

filtering methods. Snapshot methods are generally evaluated based on a single epoch

only, with no memory of the previous history of measurements, using a least squares

approach [48; 129]. The snapshot approach is used more frequently since it does not

have to rely on receiver motion [48]. Filtering methods, on the other hand, typically

parallel Kalman filter structures, with each filter based on a different hypothesis, even

if integrity is evaluated on an epoch-by-epoch basis [129]. In [48], a filtering scheme

describes using previous data in averaging or filtering, specifically the last estimates of

position and possibly velocity to predict the incoming measurements.

In addition, [129] notes that these integrity algorithms can be further defined as ei-

ther a position domain (based on observable position errors) or range domain (based on

errors in pseudorange measurements) algorithm based on the characteristics of the test

statistics used in FDE. In a least squares-based snapshot approach, the application the

range domain and position domain methods are equivalent since there is a direct transfor-

mation between them. However, in the filtering approach, the relationship between the

range domain test statistics and position domain errors in determining a horizontal pro-

tection limit is difficult to ascertain analytically when working in the range domain. This

is due to the fact that the current navigation solution is conditioned on the past history of

measurements and navigation system model. The evolution of the GPS integrity methods

described in this section starts with snapshot methods and ends with filtering methods.

Both snapshot and filtering methods are extremely valuable, and the choice often de-

pends on application and computational limitations, although the latter has become less of

a restriction as software and hardware capability has grown significantly. A simple com-

parison is made in [58], stating that the snapshot method, although sometimes limited, is

easier to implement, computationally less complex, and is more easily understood intu-

itively than filtering methods. However, the authors do recognize that the filtering method

using Kalman filtering are expected to provide a higher level of performance based on the
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use of a priori information and the ability to incorporate the impact of the GPS receiver

clock. Table 2.3 provides a simple summary of select GPS integrity methods discussed in

the following sections.

2.13.1 Receiver Autonomous Integrity Monitoring. The appeal of GPS to both

the military and civilian user community has led to a considerable amount of work in in-

tegrity algorithms being focused on this particular system [110]. Of special significance is

Receiver Autonomous Integrity Monitoring (RAIM), which is useful because it is passive

and localized to the individual GPS receiver, therefore not requiring a large and compli-

cated infrastructure. Since the receiver lies at the end of the integrity processing chain,

it is perhaps the most critical stage in integrity determination [79]. According to [90],

RAIM algorithms are not standardized, but most current implementations are based on

least-squares-based snapshot, or equivalent methods.

Three traditional integrity algorithms developed for RAIM have been found to largely

form the foundation for integrity monitoring. Two of these algorithms are described in

some detail in this section because of their importance, with the third evaluated in sum-

mary. Many newer algorithms have sought to extend on these basic concepts, and are

discussed in later sections. As pointed out by [90], the basic approaches in GPS RAIM

are limited in some degree in both the availability of detection and, especially, exclusion

capability. This is due to limitations imposed by, for example, limited numbers of satellite

measurements available, satellite geometry, and vulnerability to interference of both the

GPS signal and signals from augmentation systems. The basic RAIM approaches are also

restricted to a single measurement failure case [18; 24; 89]. It should be noted that the sin-

gle failure assumption is largely valid for GPS, where RAIM is needed only to detect rare

slow-growing failures that are expected to occur fewer than three times a year in GPS. In

contrast to slow-growing errors, larger, nearly instantaneous, or “step,” failures commonly

associated with hardware failure or other loss of measurement sources are more likely to

occur, but also more likely to be detected. GPS receivers are often equipped to handle

single, and potentially multiple, step failures.
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Table 2.3: Summary Table: Select GPS Integrity Methods

Method Classification Description Key
References

Parity Snapshot, Test statistic results from error [110] [117]
Vector RAIM, transformation to the null-space

position domain of HT

Residual Snapshot, Test statistic results from least [95]
RAIM, squares residuals
position domain

Range Snapshot, Comparison of actual [68]
Comparison RAIM, pseudorange measurements

range domain against alarm threshold

Slope Snapshot, Models linear relationship [16] [18]
RAIM, between horizontal position [23] [130]
range & error and test statistic; HPL [129]
position approximation based on simulated
domains bias on satellite with least

observable test statistic

Solution Snapshot/filtered, Kalman filtering used to [10] [11]
Separation position domain compare position estimates [20] [130]

between parallel filters [129]

Extrapolation Filtered, Kalman filtering used to [6] [7]
range domain compare residual statistics [8] [29]

that are averaged in [30] [31]
different cycle lengths
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2.13.2 Parity Vector. The parity vector approach to integrity monitoring was

introduced by Potter and Suman [96], who first applied the methodology to inertial naviga-

tion. The approach was later reintroduced by Sturza [110] with regard to GPS applications,

and is generally presented with more mathematical detail than the other foundational al-

gorithms [16]. For this reason, a detailed derivation closely following that of [110] (unless

otherwise noted) is shown here to provide reference when later drawing comparisons later

with other algorithms.

The parity vector algorithm is predicated on the basis that the number of measure-

ments, m, must exceed the number of dimensions, n, of the states being estimated by at

least one, such that m ≥ n + 1. The measurement model, linearized about a given state

vector, x, is described by the equation:

z = Hx + w + b (2.126)

where z is the m× 1 resultant measurement vector based on the product of the m× n

linear observation matrix, H, and the n× 1 state vector, x, plus the m× 1 vector of zero-

mean Gaussian noise, w, with a diagonal covariance matrix, σ2Im×m. The final added

vector, b (m× 1), is a vector of zeros for the no fault condition, but gets some value b in

the ith element of b, representing a bias if a single fault occurs in the ith measurement.

Since H is necessarily not a square matrix, but m× n, let H =
(
HTH

)−1
HT rep-

resent the n×m Moore-Penrose pseudo-inverse of H, such that the least-squares estimate

of x in state space is given by:

x̂ = Hz =
(
HTH

)−1
HT (Hx + w + b) = x + H (w + b) (2.127)

In addition, the H matrix is assumed to be composed of linearly independent column

vectors, allowing the decomposition of H into the product of a real orthonormal matrix Q

81



(m×m), such that Q−1 = QT , and an upper triangular matrix R (m× n), with the last

m − n rows of R containing only zeros [117]. Assuming for a moment that no noise or

faults are present, the QR decomposition can be used to solve for x [4; 117; 129]:

QTz = Rx (2.128)


 Qx

T

Qp
T


 z =


 U

0


x (2.129)

where U is the first n rows of R and QT is subdivided into matrices Qx
T (n×m) and Qp

T

((m − n) × m) [117]. The matrix Qp
T is also known as the parity matrix, P [18]. The

rows of the parity matrix are orthogonal to z, thus the columns of P span the parity space

of H [117]. As a result, when the measurements are corrupted by normally unobservable

noise or biases, a transformation to the parity space can reveal their impact in the form of

the parity vector, p, defined as:

p = Pz = P (w + b) (2.130)

with a distribution characterized as p ∼ N (Pb, σ2Im−n). The (m− n)× 1 parity vector

is based on the assumptions that p and x are independent (valid only if H is known ex-

actly [110]), and that the mean of p is zero under the no fault condition, but has a non-zero

mean if a fault is present, allowing it to be used for fault detection.

A linear transformation matrix, T (m×m) can then be developed by augmenting

the H matrix, with the rank m − n matrix P ((m− n)×m), where the product PPT =

Im×m, and P is orthogonal to H, such that PH = 0. Therefore, T maps the measurement

space into the n dimensional state space and m− n dimensional parity space.
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Note that T is a full rank square matrix, such that the inverse matrix T−1 exists with

TT−1 =T−1T = I. Thus, T−1 is the linear transformation mapping back from the state

space and parity space to the measurement space, allowing for the formation of a fault

vector, f (m× 1):

f = T−1


 0

p


 =

[
H|PT

]

 0

Pz


 =

(
PTP

)
z (2.131)

where f is normally distributed with mean PT Pb and covariance σ2PT P. It should be noted

that the matrix product PT P forms an idempotent matrix, such that this matrix times itself

is equal to itself. Although p and f are defined in different spaces, their respective inner

products yield the same results:

pTp = (Pz)T (Pz) = zTPTPz (2.132)

and

fT f =
(
PTPz

)T (
PTPz

)
= zTPTPPTPz = zTPT IPz = zTPTPz (2.133)

thereby producing a single, non-negative scalar value that can be used as a test statistic,

denoted as D, for fault detection. An evaluation of dual hypotheses H0, the case where no

fault occurs, and H1, the condition under which a single fault is present, can then be given

by:

D

H1

>

<
H0

γ (2.134)

where γ is the threshold value for comparison, based on the false alarm rate probability,

pfa, number of redundant measurements, and covariance of the noise. If D = pTp = ‖p‖2
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> γ, then a fault is declared. As described in [18], it is often more convenient to represent

the decision space in terms of D = ‖p‖, and the monotonic relationship between ‖p‖ and

‖p‖2 allows computations using chi-square statistics on ‖p‖2 and then taking the square

root to find the corresponding values for ‖p‖. Using the latter case as the test statistic, the

detection threshold, γ, can be computed as [117]:

γ = σ
√

2 erfc−1(pfa) for m− n = 1 (2.135)

and

γ = σ
√

2 erfc−1
(pfa

m

)
for m− n ≥ 2 (2.136)

given that [117]:

pfa = erfc
(

γ

σ
√

2

)
(2.137)

where erfc is the complimentary error function [18; 117]:

erfc(s) =
2√
π

∫ ∞

s

e−ξ2

dξ (2.138)

Figure 2.14 illustrates the relationship between the no-fault case and the case where

a bias is present. As with all cases when noise uncertainty is a factor, two conditions exist

for misidentification of the system status: The case where D > γ, but no failure actually

occurred (false alarm), pfa = P [D > γ|H0 ], and the case where D < γ, but the system

has actually failed (missed detection), pmd = P [D < γ|H1 ].

The derivation presented here was developed in general mathematical terms and, as

shown by Sturza in [110], can be implemented in both GPS and INS systems.
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2.13.3 Least Squares Residual. Foundational work on the least squares residual

concept applied to GPS integrity monitoring is commonly attributed [16; 39; 70; 79]

to Parkinson and Axelrad [95], and is summarized here (see also Table 2.3). Although

not explicitly stated in [95], under the general least squares assumption, the system is

overdetermined, such that m > n, meaning there are m− n degrees of freedom (DOF).

As in the parity vector case, fault detection depends on having at least one redundant

measurement, such that m ≥ n + 1. As stated earlier, the authors use n = 4, for the four

unknowns in the position solution; three position coordinates and one clock bias term. In

their original work, the measurement equation is given in terms of the pseudorange:

ρi = di −
[
eT

i 1
]
x−εi (2.139)

where ρi is the pseudorange to the ith satellite, di is the projection of the vector from Earth

center to the ith satellite onto the user line of site to the ith satellite, ei is the unit vector

along the user line of site to the ith satellite, x is the n-length position vector, and εi is the

normally distributed measurement error with mean µi and variance σ2
i .

With the noted exception of the noise term, the vector representation of the mea-

surements given by [95] can be arranged such that it is expressed in a form similar to that

in Section 2.13.2 [95]:

zm×1 = dm×1 − ρm×1 =




eT
i 1

. . .

. . .

eT
m1




xn×1 + εm×1 = Hm×nxn×1 + εm×1 (2.140)

and, as before, the least squares estimate can be expressed as:
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x̂ =
(
HTH

)−1
HTz = Hz (2.141)

with an estimate of the measurement given by:

ẑ = Hx̂ = HHz (2.142)

The vector of residual errors is formed by the difference between the predicted and actual

measurements:

ε̂ = z− ẑ = z−HHz =
(
I−HH

)
z (2.143)

Note that HH is an m ×m matrix that projects a vector onto column space of H, while

I−HH is an m × m matrix that projects the vector on to the orthogonal complement

of the column space, the left nullspace (i.e., the nullspace of HT ). Replacing z with

Equation (2.140) in the above result shows that the measurement error is also folded into

the residuals:

ε̂ =
(
I−HH

)
(Hx + ε)

= Hx−HHHx + ε−HHε

= H
(
I−HH

)
x +

(
I−HH

)
ε (2.144)

= H
(
I− (

HTH
)−1

HTH
)

x +
(
I−HH

)
ε

ε̂ = H (I− I)x +
(
I−HH

)
ε =

(
I−HH

)
ε

For the least squares problem, the average error in m equations is conveniently

defined by the sum of the squares of the error [108]. The authors adopted this convention

in coining the widely used sum-squared error (SSE) term for the sum of the squares of the
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range residual errors [95]. The SSE is then defined as the inner product of the residuals,

ε̂T ε̂, or, equivalently, as the trace of the outer product, trace
(
ε̂ε̂T

)
.

As a non-negative scalar value based on the error, the SSE is useful as a test statistic.

With ε drawn from independent identically-distributed (i.i.d) zero-mean Gaussian random

variables, the sum of the squares of the errors are said to exhibit a chi-squared distribution,

with m− 4 degrees of freedom in this case. The proposed chi-squared test statistic is then

given by:

r =

√
ε̂T ε̂

m− 4
=

√
SSE

m− 4
(2.145)

The noncentral chi-squared distribution must be considered when the errors exhibit a

non-zero mean, but according to the authors, the distribution is affected more by geometry

than by the non-centrality parameter. The non-central chi-square density function cannot

be written in closed form, but can be approximated using a finite number of terms and

integrated numerically [18; 95]. In [18], the non-centrality parameter, λ, is proven to be:

λ =

(
pbias

σ

)2

(2.146)

regardless of the number of degrees of freedom, and where pbias is the magnitude of

the deterministic bias portion of the pseudorange error for a satellite, as observed in the

parity space, and σ is the standard deviation of the pseudorange measurement noise. This

apparent cross-over between the parity method and least-squares residual method is not

coincidental, and will be discussed in the next section.

The integrity check process for the least-squares residual method involves comput-

ing r for all satellites in view and comparing to some threshold, γ. The threshold values

are generated through Monte Carlo analysis and selected according to false alarm and

missed detection probability requirements. A failure is detected if r > γ. A failed satellite

can potentially be identified by running the test against m subsets of m− 1 satellites.
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2.13.4 Parity Vector & Residual Methods Commonality. As it turns out, the

I−HH matrix presented in Section 2.13.3 is equivalent to the PTP matrix used to com-

pute the fault vector, f, shown in Section 2.13.2, as f =
(
I−HH

)
z = PTPz. This

consistency is reassuring given that the near optimal solution to the least-squares problem

is found through maximum likelihood estimation, and we arrive at the same conclusion

through these two different approaches.

Equivalence between these two methods was examined by Brown and Kelly in other

notable papers [15; 16; 62] on GPS integrity monitoring. Brown drew an additional com-

parison to the “Range-Comparison Method” (RCM) proposed by Lee [68] (see Table 2.3),

which uses the differences between five satellite pseudorange measurements and the re-

spective predictions of the pseudoranges to determine an abnormal state. This method

apparently actually predates the least squares algorithm given in [95]. The premise for

Lee’s method is that if all satellites are operating normally, the distribution of the errors

will be zero mean, but if a single satellite is failing, then the subsets of the satellites ex-

cluding the failed satellite will have zero mean errors, but subsets including the failed

satellite will not. This concept sounds similar to the parity vector approach, and indeed

Brown showed that a linear transformation exists to take the RCM test statistic into the

parity vector p.

Kelly [62] also evaluated the three methods considered by Brown and drew the same

conclusion, believing that the three methods are essentially equivalent, provided an equal

alarm rate being used to determine the threshold value. Kelly also considered the RAIM

approach developed by Brenner [10] for an actual RAIM implementation tested by Honey-

well, and found the method parallel to the parity vector approach, which is consistent with

Brenner’s own description. Brenner’s method has also been called a solution separation

method [8; 69] and will be discussed in detail later.

Ultimately, the parity vector and least squares residuals methods are core algo-

rithms for RAIM, which is still considered the primary means of assuring GPS integrity

today [55]. According to the previous discussions, the results of these methods should
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be comparable, but two conflicting opinions were seen as to which method should be

implemented. Brown contends that the algorithm most easily implemented in real-time

would appear to be the least-squares method [15]. However, Brenner states that the or-

thogonal transformations used in the parity-vector method preserve Gaussian statistics,

and is thus a better implementation than models based on more complicated chi-square

distributions [10]. The methods described here established a baseline for fault detection

of bias-like ranging errors in navigation sensor measurements that provide the genesis for

current and state-of-the-art integrity methods, as well as set a framework for the investi-

gation of bearing errors as may occur in image-based sensors.

2.13.5 Evolution of RAIM. Initially, the integrity algorithms were able only to

detect a failure, not necessarily identify the failing system. Adaptations of the algorithms

and additional redundancies in the measurements have made possible not only the detec-

tion, but also the identification and possible exclusion of the source of bad measurements.

Basic RAIM is restricted to the case of only a single measurement source failure. Selected

key examples are discussed in this section to encapsulate the evolution of the integrity

monitoring process.

An algorithm developed by [18] is based on the sum-square-of-the-residuals de-

scribed in Section 2.13.3 as a test statistic. As described earlier, the test statistic has a

chi-square distribution for analysis. In the proposed algorithm, a protection radius pa-

rameter is developed to approximate the true horizontal protection level under the worst

case bias conditions [18]. The worst case bias is defined as the single satellite with the

hardest-to-detect pseudorange bias, or bias that induces the largest missed alert probability

when noise is present [18]. Although the algorithm can only approximate the true HPL, it

serves very well to identify the satellites whose geometry negatively impact the geometric

dilution of precision. The method in its basic form, however, can only be used for detec-

tion, not the joint detection and estimation problem [18]. The method is called the “Slope

Method” in this dissertation. This method is especially useful for visualizing the impact

of biased measurements on the position error.
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The term “slope” is used to describe the ratio between the horizontal position error

and the calculated test statistic. In other words, the slope for each satellite is a ramp-like

model error trajectory that linearly approximates relationship between a growing pseu-

dorange bias value and the impact of that bias on the horizontal position error. Using

previously defined terms, the slope for the ith satellite is given as the mapping function

between the horizontal position space and the parity space [130]:

Slopei =

√
H

2

1,i + H
2

2,i√
Si,i

(2.147)

where S = PTP. Initial development of this method is based on the deterministic case

(i.e., no noise is present) such that p = P (b + 0 ), and the horizontal position error

resulting from a bias fault on the ith measurement is given by [130]:

Hεi
= Slopei ‖p‖ (2.148)

Since the worst case bias condition is assumed, an initial upper bound on the position

error is estimated by using the satellite associated with the largest slope [18], and is given

by [130]:

|Hbias| = max
i=1:m

[Slopei ] ‖p‖ (2.149)

where max [Slopei ], i = 1:m = 1, 2, ..., m is alternatively called SLOPEmax. Of course,

the measurements are not deterministic, and thus the process cannot reflect the true hor-

izontal position error. However, statistically, if the measurement noise is assumed to be

zero-mean AWGN, then the expected value of the parity vector is reasonably approxi-

mated by the deterministic case [110; 117]:
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E{p} = E{Pb + v}
= E{Pb}+ E{v} (2.150)

= Pb + 0

The slope allows for a visualization of the projection of error into the observable

parity space based test statistic in the form of a marginal density. Figure 2.15 shows an

example of the slope relationship and the test statistic density using simulated data (3000

samples) for a bias error on satellite number 1, the satellite with the largest slope in this

case. Figure 2.16 shows the same magnitude bias on satellite number 4, which has the

second largest slope. From these illustrations, it easy to see how a bias on satellite 1 is

harder to detect when looking at the distribution of the test statistic, and why this method

considers using the maximum slope satellite in designing a protection radius. It should be

noted, as pointed out by [91], and demonstrated in these figures, that a failure could occur

on any of the available satellites, and thus the probability of an unacceptable solution could

be overestimated and the RAIM availability underestimated.

A deterministic estimate of the total pseudorange error is insufficient in that it does

not take into account the impact of the noise on the test statistic, as illustrated in the

previous figures where the center of mass of the error ellipses (or approximately elliptical

distributions) is representative of the deterministic bias. Given that this is a snapshot

method, the realized value of the noise at any epoch may subtract or add to the range bias.

In order to compensate for this uncertainty, and provide a better approximation of the

upper bound, the horizontal protection radius is the |Hbias| term given by Equation (4.10)

computed using the ‖p‖ value that establishes the center of mass of the uncertainty ellipse

at a point on the SLOPEmax line where only an area equal to pmd is to the left of the

threshold.
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In the example illustrated in Figure 2.15 and Figure 2.16, this value is ‖p‖ = 279.

The protection radius is then represented by the horizontal line intersecting the horizontal

position error (vertical) axis and the SLOPEmax line at the given value of ‖p‖.

Another reference point in the evolution in RAIM is found in [98]. In this pa-

per, Pullen, et. al., argue that the assumptions made in traditional RAIM algorithms do

not consider any prior probability information that may influence false alarm and missed

detection probabilities, and develop the idea of a prior probability model (PPM) based

on [33]. The PPM provides information on whether or not potential failures exist before

measurements are actually taken. Unlike in [33], where discrete failure parameters were

used, this PPM used continuous Gamma and Normal distributions for spacecraft failures.

Failure probability is based on the mean-time-to-restore (MTTR) and mean-time-between-

failures (MTBF), and is given by the equation [33]:

PF =
MTTR

MTTR + MTBF
(2.151)

with each satellite evaluated against its individual PF to determine how it would be mod-

eled in terms of error in a scenario simulation.

The researchers then developed a cost function based on five possible RAIM re-

sults, including good position, detected bad position, missed detection, false alarm, and

non-availability. The cost was minimized computing the cost for all possible discrete

thresholds and choosing the threshold for the smallest cost for the point where the relative

position error is exceeded. The idea introduces the idea of using cost-based models and a

priori information. This paper set out to develop optimal thresholds for GPS geometries,

but produced only mixed results [98]. However, their efforts showed that a Bayesian ap-

proach could prove useful, including a measurement history, which is the thrust of work

by [94] and has later application in filtering methods.

In their paper [116], van Diggelen and A. Brown developed and proved two theo-

rems related to GPS RAIM methods based on the least squares and parity vector methods.
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They first showed that, given only one set of GPS measurements, that the fault vector

is independent of the navigation error. Their mathematical proof follows that presented

in Section 2.13.2, with an additional singular value decomposition of H used in show-

ing that the fault vector and navigation error are functions of two different independent,

identically-distributed random variables, and thus themselves statistically independent of

each other. This implies that it is essential to accumulate measurements over time be-

fore predicting navigation solution precision. Secondly, they showed that using the parity

method of RAIM to correct a biased navigation solution is equivalent to removing the bi-

ased measurement in the first place, demonstrating the true strength of the parity method.

The mathematics detailed in [116] are described here to set up later discussions

on filtering approaches to integrity. Building from notation defined in Section 2.13.2, a

navigation solution difference term, d, is defined as the difference between the position

vector, x, and the best estimate of x, or x̂ [116]:

d = x̂− x = He (2.152)

where e is the error in the measurements. Redundant measurement requirements allow

standard RAIM techniques to estimate the measurement error e, and thereby infer the

value of the measurement error, d. The estimate of e is commonly done through the use

of the parity vector, p, or fault vector, f , as shown in [110], and described in detail earlier.

The fact that both the parity, P, and S = PTP matrices are orthogonal to H allows p and

f to be redefined as [116]:

p = Pe (2.153)

and

f = Se (2.154)

A single bias is assumed in the ith element of e, which in turn manifests in the ith

element of f , through the relationship [116]:
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fi = S(:,i)e (2.155)

where the ith column of S is used to couple the bias error of e to fi. Based on the assump-

tion that the remaining elements of e are zero-mean noise, the best estimate of the error is

given by [116]:

ê = [0 0 . . . 0 êi 0 . . . 0 ]T (2.156)

Substituting Equation (2.156) into Equation (2.155) results in the relationship [116]:

êi =
fi

S(i,i)

(2.157)

allowing the estimate of the navigation error, d̂, based on the estimate of the bias, ê [116]:

d̂ = Hê = H(:,i)êi (2.158)

where (:, i) indicates the ith column of H.

Given a redundant system m > n, using the standard measurement model for z, the

fault vector f from Equation (2.154), and the difference factor d from Equation (2.152),

and provided the elements of e are i.i.d. random variables, the following proof by [116]

demonstrates the independence of f and d:

Let the singular value decomposition of H be described by [116]:

H = U


 Σ

0


VT (2.159)
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where U and V are square orthonormal matrices and Σ is a diagonal n × n matrix. From

the decomposition of H, the following relationships are shown in [116]:

d = He

=


V [Σ 0 ]UTUe


 Σ

0


VT



−1

V [Σ 0 ]UTe (2.160)

=
(
V Σ−2 VT

)
V [Σ 0 ]UTe

= V
[
Σ−1 0

]
UTe

f = Se = I−HHe

= I−U


 Σ

0


VTV [Σ 0 ]UTe

= I−U


 I 0

0 0


UTe (2.161)

= U


I−


 I 0

0 0





UTe

= U


 0

I


 [0 I ]UTe

the final step the authors present to prove independence is to define the transformed error

estimate, ẽ such that [116]:
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ẽ =


 ẽ1

ẽ2


 (2.162)

= UTe

with ẽ1 ∈ Rn and ẽ2 ∈ Rm−n. As a result, the expressions for d and f can be rewritten in

terms of the elements of ẽ [116]:

d = VΣ−1ẽ1 (2.163)

f = U


 0

I


 ẽ2 (2.164)

and therefore, d and f are functions of n and m − n different random variables, respec-

tively, under the assumption the e is made up of i.i.d random variables. As a result of the

analysis done by [116], a significant case is made for filtering approaches to integrity meth-

ods where possible. This is based on the fact the authors have shown that, provided only

one set of GPS measurements, it is impossible to determine the navigation error from the

fault vector due to their independence from each other. This work demonstrated that mul-

tiple epochs improve results and relates accuracy to integrity. Later discussions describe

why use of multiple epochs may not be possible from a straight forward RAIM approach.

Filtering approaches would obviously help in tracking changes of what are shown here

to be random variables, while [39] also adds that the thresholds are themselves random

variables. An additional proof in [116], shows that whether the bias error is corrected

or excluded before measurement incorporation the influence on the navigation solution is
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the same. The exclusion is accomplished by zeroing the ith row of the H matrix before

performing the pseudoinverse and subsequent operations. This methodology is relevant to

the method by [11], described in detail later.

In more recent, related work, Arthur [4] investigated the independence of the fault

vector and navigation solution precision, without assuming that only one measurement

contains a bias. At the same time he examined the more difficult case where biases are

on the same order as the variance. Arthur recognized that although pTp = fT f from

the parity vector method, the dimensions of p and f differed, causing part of the error to

be unobservable in the parity space. He proposes the concept of a “Gamma-space” and

introduces a scaling matrix created to improve upon previous techniques in calculating

confidence levels of position error magnitude. This method also potentially handles cases

where more than one bias is present (i.e., multiple failures).

Recently, an investigation was done into the least squares approach presented earlier,

where it was assessed to be limited in potential for multiple failure detection due to loss

of information through the projection to the subspace [79]. This loss of information in the

multiple failure case results from mutual cancelation of the errors. The proposed technique

attempts to reconstruct lost information through the use of measurements collected over

multiple epochs.

The initial mathematical development parallels that found in Section 2.13.3. How-

ever, in this case, resultant projections of the error vector are collected, epoch to epoch,

taking advantage of the fact that the geometry between the user and satellite changes dur-

ing these periods. In this way, the algorithm monitors each line of site and the norm of

the residual vector, in order to reconstruct the error vector itself. One difficulty faced

in this method is that the assumption of independence between the subspaces between

epochs cannot be met due the constant clock offset value in the H matrix. Thus, the pro-

cess evaluates errors in the subspace orthogonal to both the nullspace and last column of

H. Another problem is that with only small changes in relative geometry, ill-conditioned

matrices may be produced, complicating the least squares computation.
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This section fully described the fundamental RAIM algorithms providing a founda-

tion for current and future work. The basic equivalence of the parity vector method and

least squares method was clearly shown, and relevant extensions of the base theory was

investigated. In current literature, the terms parity vector and least squares are often used

synonymously, although the math expressed may reflect one particular approach or the

other.

2.14 Recent Directions in Integrity Monitoring

As described previously, RAIM was initially developed during a timeframe where

GPS was considered only as an independent system. At that time, GPS was not the primary

navigation system for flight, and selective availability (SA) was the dominant error source.

Now, SA has been turned off, and GPS has become a mainstay of navigation. This has led

to new challenges in and increased demands on integrity monitoring capability.

2.14.1 Weighting Approaches. In the absence of SA, other satellite error

sources must be considered, some of which are unique to each satellite [93]. Although

developed while SA was still a factor, integrity approaches presented by van Graas, et

al, [117] and Walter, et al, [124] have application today. The methods extend the least

squares (or equivalently, parity vector) methodology to apply weighting to the relative

satellite errors by multiplying by a measurement covariance matrix before deriving the

parity vector. This allows accounting for cases where the measurements from the satel-

lites are not assumed to have the same statistics.

A newer method, called NIORAIM has been proposed by Hwang and Brown [54] to

apply non-uniform weighting to the measurements in an effort to better balance position

accuracy with integrity monitoring. In fact, the authors propose increasing integrity avail-

ability at the expense of accuracy (while still meeting accuracy requirements), building

on the concepts and detailed mathematics introduced by Ober [92]. The method itself is

based in the least squares method and also incorporates the SLOPE factor shown earlier.
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A reduction of the maximum slope implies that RAIM availability would be improved

through reducing the horizontal protection limit. This is done via weighting the individual

satellite measurements. An optimal method for determining the required weights has not

been found, so an ad-hoc iterative method is applied. Extensive Monte Carlo analysis is

done to generate table of look up values to be used in real-time.

Another recent proposal is the Operationally Weighted Average Solution (OWAS,

renamed OWAS-1 for single fault detection and OWAS-2 for working with two different

satellite constellations) presented by Lee [71]. Like the NIORAIM concept, the OWAS

approach seeks to improve RAIM availability, with the recognized trade off between posi-

tion accuracy and integrity. The key difference between the two methods is that NIORAIM

applies numerically-derived weighting to the range measurements while OWAS-1 derives

weights analytically, and in the position domain, to obtain a position solution [71]. OWAS-

2 proposes use of the weighted average of two individual GPS and Galileo solutions, again

applying the OWAS-1 weighting concept in the position domain. OWAS-2 is also intended

to handle multiple faults.

2.14.2 GPS Integrity Channel (GIC). For a GPS-only system there is no in-

dependent method for verifying whether a detection is false or correct [93]; therefore, a

number of ground-based and space-based augmentation systems have been proposed to

improve the integrity associated with GPS. These include such systems as the Local Area

Augmentation System (LAAS) [44], Wide Area Augmentation System (WAAS) [103],

European Geostationary Navigation Overlay System (EGNOS) [118], and the Japanese

Multi-Functional Satellite Augmentation System (MSAS) [102], all designed to monitor

GPS performance real-time.

These systems relay error information (atmospheric error data for example) and/or

differential corrections to GPS users, which allows for updating of position estimates,

improving user accuracy. Information is also provided regarding the health status of satel-

lites, which aids in integrity monitoring in the user GPS receiver. In the event of satellite
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failure, a “don’t use” message indicating to the user receiver that a particular satellite

should be removed from the navigation solution, thereby improving integrity for the user.

However, RAIM is still done by the individual receivers, commonly using methods previ-

ously described.

These augmentation systems are all considered RF-based, and thus vulnerable to the

same RF interfence/jamming vulnerabilities as the original GPS signal. This is also true,

although perhaps to a lesser extent with multiple frequencies, for methods that propose

using multi-constellations like GPS-GLONASS-Galileo-QZSS. As extensive research in

this area is ongoing, it is worth mentioning here for completeness. However, these aug-

mentation systems are peripheral to the area of research outlined in this dissertation.

2.15 Integrated Systems

The fundamental RAIM algorithms based on GPS-only measurements require that

there are more measurements available than the number of unknowns in the position vec-

tor, i.e. m ≥ n + 1. This condition cannot always be met, therefore it makes intuitive

sense that improvements in integrity would be derived from additional independent mea-

surements, even when using instantaneous measurements. As discussed earlier, Potter and

Suman [96] explicitly showed that the parity vector algorithm could be applied to other

systems, such as INS (prior to the adaptation to GPS by Sturza [110]), while the least-

squares algorithm is generally applicable to any overdetermined system, which reempha-

sizes the mathematical detail provided in these sections. Consequently, these methods are

being extended to the opportunity provided by multi-constellations of GNSS satellites and

GPS integrated systems.

2.15.1 Multi-Constellations. With GLONASS already in existence, and the

potential for new navigation satellite systems such as Europe’s Galileo System, Japan’s

Quazi-Zenith Satellite System (QZSS), and China’s Beidou Navigation System (BNS),

there has been research into the potential for improving GPS integrity through the use
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of multi-constellations. Most recent work has focused on the combination of GPS with

Galileo because of Galileo’s near-term operational status and the fact that these two par-

ticular constellations will provide greater global coverage than the others.

Because of similarities in position determination from space based platforms, it ap-

pears in large part, that the integrity algorithms being developed primarily extend the GPS

RAIM parity vector/least squares algorithms previously described to the broader class

of GNSS, and include the use of weighting proposed by [69; 71]. The anticipated ad-

vantage of using multi-constellation is obviously having more independent measurements

available to help determine position as well as having different frequencies available to

help mitigate atmospheric errors. In terms of integrity, the additional measurements can

help with detection and exclusion of multiple failures. Realizing that there may be novel

approaches still to be uncovered, the vulnerability to RF interference is still a potential

problem for these systems.

2.15.2 Multi-Sensor Integration. In an effort to produce a consistent naviga-

tion solution during periods of GPS outages, GPS receivers have long been integrated with

a large variety of different, already existing, navigation systems. Baro-aiding, integration

with inertial navigation systems (INS), tighter integration with inertial measurement units

(IMU), and integration with ground based radiofrequency (RF) location systems (e.g. Lo-

ran and pseudolites) are just a few examples. Integrity has always been a consideration,

but is not often investigated in detail in publications on the subject. The overarching

principle, once again, is that integrity improvement is expected when more independent

measurements are available. This section provides some examples of integration schemes

and the chosen approach to integrity monitoring.

The integration of GPS with the Loran systems has been under consideration for

more than a decade. In [36], Enge, et. al., proposed modeling the Loran measurement

equation as a pseudorange given by [36]:
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ρi = ri + c(b + gi) + cdi (2.165)

where ρi is the Loran pseudorange, ri is the actual Loran path length, c is the speed of

light, b is the receiver clock offset from GPS time, di is the propagation delay, and gi is the

unknown offset between Loran and GPS. This form is then similar to (Equation (2.139)),

and can thus be incorporated into the least squares model used for RAIM.

More recent approaches examine integration with Loran and include INS as well. In

these cases, the IMU is typically integrated with GPS and loosely coupled with Loran. An

example of this approach is given in [2], where the problem with TDOA measurements

applied to RAIM was examined. When TDOA measurements are used, a single “master

fault” appears as multiple faults to the receiver, violating the single fault assumption of

RAIM. To counter this problem, the parity space matrix, P, was augmented by adding

characteristic vectors for each Loran master station. Through this approach, the standard

RAIM parity vector approach could be used.

2.15.3 Extrapolation Method. GPS is commonly integrated with some form of

inertial system, with or without other additional systems such as Loran. Diesel, et al, [30]

proposed an integrated GPS and inertial reference system (IRS) to provide WAAS speci-

fied integrity without the use of WAAS. This mechanism was designated the Autonomous

Integrity Monitored Extrapolation (AIMEr) approach, simply called the extrapolation

method in this dissertation (see Table 2.3). Since an aircraft is non-stationary, there are

often periods of time where an insufficient number of satellites are in view to perform

RAIM failure detection and exclusion. This problem could possibly be countered were

the vehicle stationary, allowing the generation of more equations than unknowns through

accumulation of measurements over time [30], but such is not the case here. Therefore

independent RAIM “snapshots” must be used to determine integrity.

However, the authors conclude that by replacing the dynamics model of the aircraft

with the dynamics of the IRS errors, then the least squares approach of the smaller dynam-
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ics over extended time could effectively detect very small satellite clock errors using only

four satellites in view. The integration is done using an open loop Kalman filter to update

an error state vector. Separate Kalman filters are used to test the validity of the individual

satellite measurements. The test statistics for RAIM are generated from the Kalman filter

residuals based on a weighted average over time. There are actually three time averages

computed, 2.5 minutes, 10 minutes, and 30 minutes. The statistics of these measures are

thought to exhibit central chi-square distributions for the no fault case and non-central

chi-square distributions for the fault case, as was described in Section 2.13.3.

The extrapolation method is one of the state-of-the art methods in INS/GPS-aided

integrity investigated in this research to deepen understanding of integrity concepts. Chap-

ter III provides greater detail of this method and results and analysis of initial simulation

using GPS measurements.

2.15.4 Solution Separation. Another integrity method for INS/GPS integration

under recent consideration is the solution separation (SS) by Brenner [10] (see Table 2.3)

mentioned in Section 2.13.4 [8; 20; 72]. Recall that the method was based on the parity

vector method with Gaussian assumptions of zero mean for the no fault case and a non-

zero mean for the fault case. The algorithm uses a hierarchical tree, first examining the

solution using all satellites, then removing one satellite measurement at a time, recomput-

ing the solution, and comparing the new solution to the full solution [8]. This particular

method uses only the instantaneous measurements. Solutions are compared to a threshold

designed based on the required false alarm rate.

The solution separation method is another state-of-the art method studied for this

research. Mathematical detail, along with results and analysis of initial simulation us-

ing GPS measurements is provided in Chapter III and comparisons are drawn with the

extrapolation method and slope method.

In recent papers, Bhatti compares the SS and extrapolation methods, and recognizes

that neither method makes provisions for detecting the error rate and, therefore, seeks to
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enhance the methods to do so [6; 7; 8]. Error rate identification would aid the error de-

tection algorithms in meeting integrity requirements. High error rates quickly violate the

threshold and are easily detected, but slow growing errors, like those associated with GPS

clock drift and INS, are more troublesome. By using a snapshot of the measurements, the

SS method is more likely to catch the rapidly changing errors, while the time averaging in

the extrapolation method would likely aid in discovering the slower growth errors, but the

detection must be done within an acceptable time-to-alarm. The author proposes an algo-

rithm based on the detection of the rate of the conventional test statistic. This algorithm

is implemented by modeling three new states in the Kalman filter, including one each for

velocity, acceleration, and jerk. This allows for a detection of the change in the rate of the

residuals. This state-of-the-art method is an extension of the extrapolation method in its

implementation and is referenced, but not fully implemented, in the analysis in the next

chapter.

2.16 Chapter Conclusion

This chapter developed the necessary background for understanding the large num-

ber of topics involved in INS/GPS-aided and INS/image-aided navigation. The concepts of

GPS integrity were explored to set a baseline for the development of an INS/image-aided

integrity scheme. The concept of GPS integrity is well understood, but efforts continue to

improve capabilities. It was shown that the fundamental RAIM algorithms developed early

in the GPS era still form the core of today’s GPS integrity algorithms. The methodology

and basic principles of GPS integrity have remained consistent over time with the most re-

cent advances coming through augmentation with additional ground-based or space-based

systems, or through integration with INS systems. Considering these implementations is

useful, but there are fundamental differences between the observations made in GPS and

those made in image-based navigation, which drives the pursuit of a new algorithm for

image-aiding that provides the same assurances required by GPS-based systems.
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III. Simulation of Select Methods

T his chapter presents more mathematical detail and simulation results from a basic

implementation of the solution separation (SS) and extrapolation methods intro-

duced in Chapter II.

3.1 Introduction

Simulations were developed and run for the solution separation and extrapolation

methods to deepen understanding in both the underlying principles of navigation integrity

and the specific intricacies of these two integrity algorithms. The project primarily focused

on these two integrity methods for GPS/INS integrated systems, but for a comparative

baseline, the RAIM method developed by [15; 18] was also implemented.

3.1.1 Simulation Background. The computer code for the implementation of

the integrity algorithms was written in Matlab, using the tightly-coupled GPS/INS inte-

gration model developed in [119] as a foundation. Parallel Kalman filters were designed

for the Brenner and Diesel algorithms, and run in an open loop configuration. The filters

used an 18-state error model, including three each position, velocity, attitude states, ac-

celerometer bias, and gyro bias states, as well as one baro bias state and two GPS clock

error states. Preliminary work was done using a “perfect” IMU, and error-free baro and

GPS measurements. Additional simulations implement a 100Hz HG-1700 IMU model,

with perfect baro and GPS measurements. The noise-free measurements allow clearer

analysis of the effects of intentionally induced pseudorange errors. The simulated aircraft

trajectory involved a simple racetrack flight pattern, as shown in Figure 3.1.

The total run time of the simulated flight path is 1200 seconds for this initial im-

plementation. In the efforts of both Brenner and Diesel, Selective Availability (SA) was

turned on, requiring a delayed update cycle of 2-2.5 minutes to mitigate the correlation

effects of SA on the GPS measurements. SA was not initiated in this simulation, so the
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Figure 3.1: True Trajectory in Three Dimensions.

updates were run on an epoch-by-epoch basis, assuming perfect measurements in the ab-

sence of intentional error.

Integrity horizontal alert levels (HAL) specify the maximum allowable position er-

ror for a particular phase of flight. The non-precision approach phase (NPA) was chosen

for reference in these simulations. This choice requires the horizontal protection limit

(HPL), or maximum horizontal error that can be consistently detected with the specified

probability of false alarm (pfa) and probability of missed detection (pmd), to fall below an

HAL of 0.3 nmi (or 555.6 m). The commonly used probabilities of false alarm and missed

detection were set at 3.33e−7 and 1e−3, respectively, for all simulations [18]. In general,

these preliminary simulations focused on error detection, not necessarily both detection

and exclusion, although the potential for both is discussed.

3.2 Analysis

A RAIM method proposed by Brown [18] was investigated as a reference baseline

for comparison with the later methods. This method is based on GPS only, unlike the
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Brenner and Diesel methods, which involve integrated GPS/INS systems. In addition, the

Brown RAIM method is “snapshot” method, relying only on the current measurements,

while the Brenner and Diesel methods use the information from the Kalman filter based on

measurement history. As stated in summary of [18], the protection radius determined by

this method does not perfectly measure the HPL, but provides a reasonable approximation,

especially under conditions of poor satellite geometries. This was clearly observed during

the course of the simulations.

This RAIM method implements the parity vector approach deriving its information

from the from the Kalman filter measurement observation matrix, H, as was shown in

Chapter II. Recall that the protection radius is then developed by taking the worst case

“slope” of the satellite measurements used, and multiplying this slope by a normalized bias

term based on n− 4 degrees of freedom (DOF) from a non-central chi-square distribution

based on the given probabilities for pfa and pmd (note: 1-DOF determined by Gaussian

methods [18]), as shown [18]:

PROTECTION RADIUS = (SLOPEmax)σpr(pbias) (3.1)

where σpr is the pseudorange measurement error and pbias is the normalized bias term.

The bias terms used in this simulation, for both the Brown and Diesel methods, are based

on Table 3.1 [18] for pfa = 3.33e−7 and pmd = 1e−3. This parity vector times itself

transpose is used as the test statistic in this method:

Test statistic =
√

pTp = ‖p‖ (3.2)

A failure is declared if the test statistic exceeds the determined threshold calculated

by the product of the normalized chi-square value from Table 3.1 and the σpr value:

Detection Threshold = (σpr)(TD) (3.3)
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Table 3.1: Non-Central Chi Square Parameters for Simulation

Chi Square Normalized bias Normalized Chi Square

DOF term (pbias) Threshold (TD)

1 8.194* 5.1037*
2 8.479 5.4615
3 8.687 5.7384
4 8.860 5.9750
5 9.009 6.1861
6 9.142 6.3789
7 9.263 6.5576
8 9.375 6.7251

*Actually determined by Gaussian Method

Unless otherwise stated, the σpr = 2 meters in the simulations since the measure-

ments were generated noise-free in order to better assess the impact of induced errors.

3.2.1 Comparison with Solution Separation Method. The solution separation

method is implemented with a bank of n + 1 Kalman filters, where n is the number of

measurements. The full filter is the baseline filter, using all n satellite measurements,

and denoted alternately as the full filter or as subfilter 0, as there are n = 0 measure-

ments removed. In addition to the full filter, there are n subfilters, each having a single

measurement excluded, identified by the index of the satellite measurement removed. For

example, subfilter 2 is the subfilter that processes all measurements except the second one.

The underlying assumption in the solution separation method is that in the case of a single

failure, resulting in an incorrect measurement, the subfilter excluding that measurement

will be unaffected. This condition allows for the detection of the failure, as the horizontal

positions determined by the full filter and that of the subfilter excluding the bad measure-

ment will diverge. This method is superior to attempting to explicitly model the errors,

because if the error model does not sufficiently describe the error condition, or the nature

of the error changes, filter performance will likely suffer and the overall performance of

the navigation system may fail to meet required specifications.
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The test statistic in the solution separation method is the root sum square of the

differences between the horizontal position errors (in the local frame) as determined by

the full filter and subfilter n:

SS Test Statistic =
√

(∆x0(1)−∆xn(1))2 + (∆x0(2)−∆xn(2))2 (3.4)

where the indices, 1 and 2, reflect the error states for the north and east position errors,

respectively. Evaluation of the test statistic is done with regard to the covariance of the

solution separation. In Brenner [11; 12], this covariance is propagated and updated using

a process supplemental to the Kalman filter process. Equivalence between this process

and the simple differencing of the covariance matrices produced by the Kalman filters

was proven in [129]. As a result, this implementation of the Brenner algorithm does not

include separate covariance propagation for the solution separation statistics, instead using

information already provided by the parallel Kalman filters.

The threshold for error detection is formed by the square root of the largest eigen-

value, λDn , of the horizontal position state covariance found from the solution separation

covariance matrix (approximated by the matrix itself) multiplied by the scale factor related

to the pfa [11; 12]:

Detection Threshold = Dn =
√

λDnQ−1(pfa/(2n)) (3.5)

where Q(s) =
1√
2π

∫ ∞

s

e
−t2

2 dt.

For the simulation, the test statistic is normalized by the detection threshold, such

that a failure is declared when the maximum normalized test statistic of the n subfilters ex-

ceeds a value of 1. The HPL (denoted as Hcov) is determined using the detection threshold

in conjunction with consideration for the covariance of the subfilter itself. The additional

term is computed using the square root of largest eigenvalue, λan , of the horizontal posi-
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tion state subfilter n covariance (again approximated by the actual value) and scaling by a

factor based on the pmd [11; 12]:

an =
√

λanQ−1(pmd) (3.6)

The HPL, or Hcov , is then equal to max{Dn + an}, over all subfilters, where n

indicates the excluded measurement. Comparison plots between the basic RAIM method

and solution separation method are shown in the following figures. In the first comparison,

a total of seven satellites were used over a period of 200 seconds of flight time. There were

no errors induced, and a perfect IMU and perfect measurements were used. Figure 3.2

shows the horizontal protection limits for the RAIM method and the solution separation

method. As discussed earlier, the RAIM method is based on GPS, while the solution

separation method takes advantage of the INS position solution as well. It is clear from

Figure 3.2, that the protection level afforded the RAIM method is far more conservative

than that of the solution separation method. The shape of the RAIM protection level

appears to show the effects of changing satellite geometry with respect to the flight path,

an artifact discussed earlier. Since no errors were induced, the test statistics for this case

were very nearly zero, as shown in Figure 3.3, with the dotted line indicating the respective

detection thresholds. For RAIM, with the pseudorange standard deviation of 2 and three

degrees of freedom, the threshold is at 11.48, as described earlier, while the normalized

threshold for the solution separation is one. This scenario was then run using only five

satellites in view.

Figure 3.4 shows the results of the HPL evaluations when the number of satellites

was reduced from 7 to 5. Notice that for both methods the level of the HPL has increased,

reflecting the reduced number of redundant satellites. In the case of standard RAIM, this is

the minimum number of satellites permissible. Based on the slope formula, it is possible to

experience numerical difficulty under poor satellite geometry, as diagonal elements of the

S matrix get very small. The integrated system shows slight rise in the HPL in the region
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Figure 3.2: Comparison of HPL: RAIM and Solution Separation.
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Figure 3.4: Comparison of HPL, 5 Satellites in View.

between 120 and 140 seconds, which coincides with the right-hand turning maneuver in

the flight path. Even considering the dynamics, the solution separation algorithm benefits

from using the Kalman filter produced covariance and not just the observation matrix in

HPL determination. Although the overall HPL of the solution separation method has risen

with the reduction in the number of satellites, it still satisfies the HAL requirement falling

below 555.6 meters. No errors were induced or detected during this run, resulting in a test

statistic evaluation mirroring that of Figure 3.3, and is thus not shown.

It is widely accepted [8; 11; 18; 30; 72] that snapshot algorithms, such as the afore-

mentioned RAIM method, are capable of detecting step or jump bias like failures. Inte-

grated systems are even more capable of detecting these failures, because the short-term

stability of the INS eases identification of higher frequency disturbances in the measure-

ments. As an illustration, Figure 3.5 shows the results of an intentional 100 m bias set

to start at 60 seconds into the run, for duration of 50 seconds. With only five satellites
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Figure 3.5: Bias Error, 5 Satellites in View.

available, both the RAIM algorithm and solution separation algorithm still easily detect

the error.

It should be noted that the direction (i.e., sign) of the error impacts the ability of the

integrity algorithm to detect any error, bias error included. The sign of the error impacts

the computation of the difference between the predicted pseudorange and that of the pseu-

dorange measurement, in that the polarity of the error combined with the polarity of the

clock error may increase or decrease the pseudorange difference, influencing detection.

In contrast to bias-type errors, ramp-type errors are more difficult to detect [8;

11; 30; 72]. The nature of ramp errors growing slowly over time makes them more

likely to appear as INS errors, and possibly be integrated by the Kalman filter into the

position solution. Because of their potential impact on integrity, especially in precise

navigation, they have been of particular interest to the navigation community in recent

years [8; 11; 30; 31; 72; 129]. In general, faster ramp growth, greater than 5 m/s, is

often sufficient for detection. Of particular concern are what as known as “slowly grow-
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ing error” or SGE [8]. This project considered ramp errors of 0.5 m/s, 1 m/s, and 2 m/s.

First comparisons were done between the RAIM method and the integrated system meth-

ods, then a comparison of the solution separation method and the initial implementation

of the extrapolation method. For comparison between the RAIM and solution separation

method, the results are presented for a 0.5 m/s ramp starting at 60 seconds into the run, for

instances where there are seven, then five satellites available. The HPL for both cases are

the same as were shown in Figure 3.2 and Figure 3.4 respectively, and therefore are not

shown here.

Figure 3.6, the RAIM algorithm does detect the ramp error at approximately 120

s, or 1 minute after the error starts, with five satellite measurements available, and one in

error. By comparison, the solution separation method detects the error at about 79 seconds,

or 19 seconds after it began. Figure 3.7 is another test of the same ramp error, this time

with seven satellites available. The results are only marginally better, with error detection

occurring about 3− 5 seconds earlier for both methods. These results, and their impact on

the phase of flight that can be met under the GPS integrity requirements for supplemental

navigation point to the potential benefit of research in this area.

3.2.2 Comparison with Extrapolation Method. Another method with potential

in this area is the extrapolation method touched on earlier. Having examined briefly a

fundamental RAIM algorithm and the solution separation method, which descends from it,

the extrapolation method would at first appear to be a significant departure. However, like

the solution separation method, the extrapolation method takes advantage of the inherent

attributes of the Kalman filter in forming another promising integrity algorithm. In this

study, the basic algorithm behind the extrapolation method has been implemented, but the

multiple cycles averaging, to be explained next, is left to future work.

The extrapolation method focuses on the Kalman filter innovations as a source of

information regarding the health of the incoming measurements. If the filter models are

correct, and the measurements are acceptable, the innovations are expected to be zero
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Figure 3.6: Ramp Error (0.5 m/s), 5 Satellites in View.
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Figure 3.7: Ramp Error (0.5 m/s), 7 Satellites in View.
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mean with a covariance V. Therefore, they provide a method of monitoring changes in the

filter potentially indicative of errors in the measurements. Early descriptions of the ex-

trapolation algorithm describe a bank of parallel filters, one for each satellite, all receiving

the same measurements, but each set with large noise values for the satellite they were

tracking [30]. More recent papers describe a filter bank like that of the solution separa-

tion method, with one filter processing all of the filter measurements, and parallel filters

each excluding a single measurement. Filters are run in an open-loop, tightly coupled

configuration using the standard Kalman filter equations.

The process involves averaging the measurements, which are the differences be-

tween the predicted pseudorange and the measured pseudorange, the observation matrix,

and residuals over variable cycle times to reduce high frequency noise [31]. As men-

tioned earlier, the implementation of the extended cycle averaging is not complete as of

this writing, but a basic implementation based on the integrity metrics that follow has

been constructed to produce preliminary results. As in the case of RAIM, a test statistic

is formed for comparison against a threshold to determine whether a failure is declared.

In this case, the statistic is the quadratic formed by the innovations, r, and the associated

covariance matrix, V [31]:

V(k) = H(k)P−(k)HT (k) + R(k) (3.7)

test statistic = rTV−1r (3.8)

where k is the kth cycle, H(k) is the observation matrix, P−(k) is the propagated filter

covariance, R is the estimated measurement covariance matrix, and r is the vector of

innovations.

Alternatively, the innovations can be transformed to a vector s, through an eigen-

vector transformation, using the eigenvalues and modal matrix formed from V. However,

it can be shown that the test statistics are equivalent [31]:
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s2 = sT s = rTV−1r (3.9)

The fundamental HPL described in [31] parallels the basic RAIM method, where

the ratio of the horizontal position error and the test statistic form a characteristic slope.

In this case the horizontal position error is a function of the Kalman gain matrix, K, and

the test statistic dividing it is formed from the eigenvector transformation matrices [31]:

Other literature [8; 72] has denoted this HPL term as HPL3, and identified it as only

one of three terms used to define the HPL term in the extrapolation method. The additional

HPL terms, and composite HPL are defined as [8; 72]:

HPL1 = σQ−1(pfa/(2n)) (3.10)

HPL2 =
√

(∆x0(1)−∆xn(1))2 + (∆x0(2)−∆xn(2))2 (3.11)

HPL = Root sum square(max(HPL1, HPL2), HPL3) (3.12)

where σ is formed from the elements related to horizontal position error in covariance

matrix. The HPL2 term is actually the test statistic from the solution separation method

and functions to drive the HPL upward when the growth between the filter horizontal po-

sition errors. More recent analysis by [8] suggests omitting this term on the basis that

it fluctuates with the measurements and may not provide enough assurance in continuity

of function. The HPL2 term may also cause violation the pfa under certain conditions.

Simulations did bear this out, with the overall HPL term tracking the ramp error and ex-

ceeding specifications. As a result, the implementation of the HPL used in this simulation

is redefined as:
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Figure 3.8: Comparison of HPL, 7 Satellites in View.

HPL =
√

HPL12 + HPL32 (3.13)

A relative comparison was done between a basic, non-averaging, extrapolation al-

gorithm with the RAIM algorithm, as was done with solution separation earlier. The same

numbers of satellites and types of ramp errors were used to provide a direct comparison.

Figure 3.8 shows the HPL computed by each algorithm for the case of seven satellites

in view. The HPL for the RAIM method is consistent with that seen in Figure 3.2. The

HPL for the extrapolation method is clearly much lower than the RAIM method after the

initialization of the filter covariance. This simulation performed as expected, yielding a

better overall HPL than either the RAIM or solution separation methods based on [8; 72].

Figure 3.9 shows that the reduction in redundant measurements, from 7 to 5, doubles

the HPL for both algorithms. There is no improvement seen in the detection time in

Figure 3.10, but no degradation is apparent either, meaning the capability has not visibly

diminished with the reduction in satellites even the uncertainty has grown in the protection
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Figure 3.9: Comparison of HPL, 5 Satellites in View.

limit. Figure 3.11 provides a direct comparison between the solution separation method

and the non-averaged extrapolation method, showing again that in this implementation,

the solution separation method is detecting pseudorange error more quickly.

3.3 Conclusions

Figure 3.11 shows the time sequence of when the pseudorange errors drive the test

statistic to the threshold for both the solution separation and extrapolation methods in this

particular implementation. The differences between the two methods is more pronounced

as the rate of ramp decreases. This is the fundamental reason behind the requirement

to prefilter in the extrapolation method, and why work should continue on this model.

These simulations verified assessments made by [6] that there may be probable cause to

exclude the HPL2 term from the HPL formulation. Also, in the absence of averaging, the

extrapolation method showed a high sensitivity to the estimated measurement noise was

observed.
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These simulations provided insight into the critical part the estimate of the measure-

ment noise plays in developing the innovation covariance, which feeds into both the test

statistic and the filter gain, but not, perhaps, in equal degrees. The contribution to both

obviously effects the slope calculation that aids HPL. Also, it can be shown that overly

conservative estimates can greatly slow or even prevent detection because it artificially

drives down the test statistic. A similar impact was observed for the basic RAIM case, as

the estimated covariance impacts the threshold, as discussed earlier.

This chapter presented additional mathematical detail and described simulation de-

velopment and results for the solution separation and extrapolation methods related to GPS

integrity described in Chapter II. This examination of two state-of-the-art approaches to

GPS integrity develops a deeper understanding of the GPS integrity process and provides

a baseline for analysis in following chapters. The next chapter details the development of

a new algorithm for image-based integrity.

124



IV. Image-Based Integrity Algorithm Development

T his chapter presents a rigorously developed algorithm for estimating the potential

worst case position error in an image-based navigation system due to an unantic-

ipated bias influencing the pixel measurement in at least one or, quite possibly, both of

the paired elements (e.g., x and y) in a pixel measurement, relative to an observable test

statistic.

4.1 Motivation

GPS integrity bases an inference of accuracy in the position solution on the quality

of the GPS measurements [25]. While this would also be the case for image-aided navi-

gation, user estimates of the error sources associated with GPS are well documented and

readily accessible. This is not the case for the much newer image-aided technology. Also,

the elemental measurement in GPS is the pseudorange to each satellite. Thus, each mea-

surement is provided by a single source, the satellite, and can be discriminated from other

measurements at each time epoch by the transmitted satellite code. However, in the case

of image-aiding, each measurement source is a target translated to an image plane, and is

presented as a measurement in the form of a vector containing a pair of pixel locations.

The pixel locations can be translated as two bearing measurements vice the single

range measurement provided by GPS, for each source at each epoch. RAIM focuses on

single fault conditions due to the complexity of identifying and excluding multiple simul-

taneous faults, although current research is focusing on the multiple failure case. This

dissertation investigates the extension of the RAIM process to image-aided navigation.

For clarity, discussions in this and following chapters will sometimes describe the image-

based measurement equivalently as a pixel pair or target, with the latter reflecting the fact

that the representation on the image plane is a projection of an observed stationary target.

Consequently, in the image-based case the variable m refers to the number of pixel pairs

available, or 2m total measurements.
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4.2 Problem Set-up

4.2.1 Image Aiding. The notation used in this section is based on the integrated

INS/Image-aided navigation scheme described earlier in Section 2.9 and Section 2.11.

The focus in this research is the development of an image-based integrity approach in

image-aided INS. With this in mind, the emphasis is on the image sensor measurements

(in the form of target pixel coordinates). The fundamental concept proposes an epoch-

by-epoch least-squares methodology independent of Kalman filter integration to monitor

performance after an image feature tracking and correspondence algorithm has run. If the

image-based measurements pass an epoch-by-epoch evaluation, they could then be fed

into an INS/Image-aided system, but this was not done in this dissertation.

The concept proposes a least-squares methodology that would be external to the

Kalman filter integration proposed [119] to monitor performance after an image feature

tracking and correspondence algorithm has run. Algorithms such as Random Sample

Consensus (RANSAC) [40], Maximum Likelihood Estimation Sample Consensus (MLE-

SAC) [114], and stochastic projection [119], for example, already exist to aid in outlier

rejection in feature matching and correspondence. However robust the algorithm, there

remains the potential for measurement error to influence the navigation system.

This research is particularly focused on the potential for a biased pixel measurement

being introduced into the navigation solution process after the initial processing, possibly

as a result of image irregularities or a mistracked target. The concept of integrity in image-

based navigation explored in this research requires that the potential impact of the error

be quantified in terms of position error. This section illustrates the correlation between the

real world target and its representation as a sensor measurement. Since the primary con-

cern is on the measurement provided by the imaging system and not the imaging process

itself, the following assumptions are made:

1. The coordinates of the stationary targets being tracked are known relative to an

earth-fixed reference frame
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2. A feature tracking algorithm is available to recognize common fixed objects from

multiple images with known probability

3. The feature tracker provides measurements in the form of a pair of pixel coordinates

for a tracked target with the measurements provided at a suitable frame rate

4. The camera is calibrated allowing a precise relationship between pixel coordinates

and the corresponding position in the camera frame, with necessary corrections for

lens distortion

5. The relationship between the camera mounting and vehicle body frame axes is

known a priori and can be expressed as a direction cosine matrix, Cb
c

The imaging process is accomplished using a pinhole camera model, which aids in

geometric and mathematical modeling by focusing all rays passing through the lens on a

point called the perspective center [51]. In this model, the perspective center is used as

the origin for the camera frame, with an imaginary image plane located one focal length

in front to avoid inversion of the scene in the field of view of the camera.

The relationship between an object on the image plane and its actual real-world

position, both relative to the camera frame origin, is that of similar triangle, making the

mathematics tractable. The geometry of the example image-based navigation system is

shown in Figure 4.1, using the parameters of interest described earlier in Table 2.1 and

repeated here in Table 4.1, for clarity.

The mathematical description of these relationships can then be described by the

following:

tn
m = sn

m + Cn
b d

b + pn (4.1)

and as a result:
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Figure 4.1: Vector Geometry in the Navigation Reference Frame.

Table 4.1: Parameter Definitions

Parameter Description

pn Vehicle position in navigation frame (NED)
Cn

b Vehicle body-to-navigation frame DCM
sn
m LOS vector from the camera to mth target

(vector for each landmark currently tracked)
tn
m Location of the mth target

(vector for each landmark currently tracked)
db IMU-to-Camera leverarm offset
Cb

c Camera-to-body frame DCM
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sn
ptm

∆
= tn

m − pn

= sn
m + Cn

b d
b

sn
ptm

= Cn
b

(
Cb

cs
c
m + db

)
(4.2)

The focus in the investigation of integrity is in the characteristics of the image-

based measurements. Thus only the relevant details related to the measurement models are

presented here (refer to Section 2.11 for additional details based on [121]). It is assumed

that the locations of the items being tracked are known, which is a requirement for the

single-epoch position solution that is considered in this research. If this is not the case,

then a simultaneous localization and mapping algorithm like that proposed in [121] would

need to be used to estimate these targets.

For the case where the targets are known, and accelerometer and gyro biases are

assumed negligible, the error state vector given by Equation (2.102) can be reduced to:

δx =


 δpn

ψ


 (4.3)

where ψ are the tilt error states. The measurement model for the mth feature is given by:

zm(ti) = Tpix
c sc

m(ti) + v(ti) (4.4)

where sc
m(ti) is the homogeneous form of the line-of-sight vector from the camera to

target m, Tpix
c is the transformation matrix from the camera frame to the image frame, and

v(ti) is independent additive white Gaussian noise of zero-mean and covariance R. Based

on the assumptions stated for Equation (4.3), the Jacobian of the nonlinear measurement

function, h[x(ti)] = Tpix
c sc

m(ti), is reduced from that given by Equation (2.107) to the

following linearized observation matrix:
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H =

[
∂h

∂pn

∂h

∂ψ

]
(4.5)

where the elements of H are the partial derivatives given by the following equations based

on [119], with µ =
1

sc
mz

and β = [0 0 1]:

∂h

∂pn
= µTpix

c

(
sc
mβCc

bC
b
n −Cc

bC
b
n

)
(4.6)

and

∂h

∂ψ
= µTpix

c

(
∂sc

m

∂ψ
− sc

mβ
∂sc

m

∂ψ

)
(4.7)

where

∂sc
m

∂ψ
= −Cc

bC
b
n [(tn − pn)×] (4.8)

For the integrity problem, the significance of this formulation is in the structure of

the observation matrix compared to the GPS case. In the GPS case, information is known

about the location of the satellite relative to the vehicle, which allows the measurement to

be modeled as a pseudorange resulting in one H matrix row for each measurement. How-

ever, in the case of image aiding, the measurements are based on pixel pairs, resulting in

multiple rows per target in the observation matrix (2-D on the pixel plane or 3-D homoge-

nous in a camera frame). This structural change increases variability in the horizontal

position, particularly when more than one pixel element is affected by error.

4.2.2 Revisiting RAIM. Fundamental terms associated with RAIM were intro-

duced in Section 2.13.1. In developing the image-based integrity algorithm, some of the

same mathematical definitions are chosen, including the parity matrix, P and the parity

vector, p, where the parity vector is derived using least-squares analysis and is used to

evaluate the error using a projection onto the null-space of HT . Recall that RAIM often
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uses the term “slope” to describe the ratio between the horizontal position error and the

calculated test statistic.

This RAIM slope is a ramp-like model error trajectory that linearly approximates

relationship between a growing bias value and the impact of that bias on the horizontal

position error. The goal of this research is to extend the RAIM concept to image-based

integrity, so reiterate the baseline, the result of the RAIM slope formulation described in

Section 2.13.1 is once again presented here. Under the single measurement failure case

assumption in basic RAIM, the slope for the ith element in the measurement vector can

then be simply given as the mapping function between the horizontal position space and

the parity space [130]:

Slopei =

√
H

2

1,i + H
2

2,i√
Sii

(4.9)

where the subscripts 1 and 2 are associated with the north and east error directions, re-

spectively, and S denotes the Parity matrix transpose times itself, resulting from the inner

product of the parity vector. Since the worst case bias condition is assumed, an initial up-

per bound on the position error is estimated by using the measurement element associated

with the largest slope and is given by [130]:

|Hbias| = max
i=1:m

[Slopei ] ‖p‖ (4.10)

where max [Slopei ], i = 1:m = 1, 2, ..., m is alternatively called SLOPEmax. Of course,

the measurements are not deterministic, and thus the process cannot reflect the true hor-

izontal position error. However, statistically, if the measurement noise is assumed to be

additive white Gaussian noise (AWGN), then the expected value of the parity vector is

reasonably approximated by the deterministic case [110; 117]. Ultimately, the slope al-

lows for a visualization of the projection of error into the observable parity space based
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test statistic in the form of a marginal density. It should also be noted that original bias

magnitude term is divided out in the final ratio.

4.3 Image-Based Integrity Algorithm Development

The goal of this research is to extend RAIM-like methodologies and algorithms

(described in Section 2.13.1) to the image-based navigation problem. Simplifying as-

sumptions are made to allow direct comparison of an image-based approach with a GPS

RAIM-type approach, which specifically focuses on the position states. In understanding

an approach to image-based navigation integrity, it is important to realize that one of the

fundamental elements given in RAIM cannot be pre-determined in image-aiding. That

element is geometry prediction. With this in mind, the algorithm being developed here

takes into consideration the nature of the image-based measurement as an angular type

measurement and incorporates this knowledge into the algorithm. The following simpli-

fying assumptions are noted:

• Tracked target positions are known a priori and do not need to be estimated in the

state vector.

• A image-based measurement is now considered a two element set (taking advantage

of association of x/y pairs) where potentially both elements have failed

• Bias is multi-dimensional and assumed to be a bias magnitude times sinusoidal com-

ponents of error angle relative to the true pixel location

• Noise is assumed to be zero-mean additive white Gaussian noise when present, but

the investigation primarily examines the deterministic case to parallel GPS RAIM

Slope approach and form a fundamental baseline

The single failure assumption described earlier in RAIM is not generally valid for

the image-based case. In the image-based case, if there is an error in target correspondence

(i.e., the wrong target is identified), then this error will generally affect both the x and y
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pixel coordinates. Therefore, a multi-dimensional evaluation space is required in order to

detect pixel pair failures.

One key advantage in the image-aided case is that an x and y elements of a pixel pair

are linked to a single observed target and, therefore, hold adjacent positions, i and j, within

the measurement vector. The bias components bi, bj are modeled as polar components of

the bias vector b, with bi = ||b|| sin(θ) and bj = ||b|| cos(θ). The choice of sin or cos was

made with consideration of the definition of x and y directions in the image plane.

The concept of “Slope” described by [18] can be fundamentally restated as the ratio

of the squared vector norm of the horizontal position error to the squared vector norm of

the parity vector, or equivalently, the residual vector in a deterministic relationship:

‖δxh‖2

‖p‖2 =
δxT

h δxh

pTp
=

bTH
T

hHhb

bTPTPb
(4.11)

where H is the n×m pseudoinverse matrix of H and P is the parity matrix, both described

in Section 2.13.1. The subscript h has been used to indicate the horizontal position ele-

ments, including the first two rows of the δx column vector and corresponding rows of H.

The slope formulation is often visualized in the square root of the ratio, as it is a monotonic

function. The following analysis is accomplished before taking any square root. Letting

G = H
T

hHh and S = PTP Equation (4.11) can be further simplified:

‖δxh‖2

‖p‖2 =
bTGb

bTSb
(4.12)

Following the assumption that the bias vector is all zeros except for the bi and bj

components, the numerator of the fraction reduces to:

bTGb = b2
i Gii + bibj (Gij + Gji) + b2

jGjj (4.13)
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The G matrix is symmetric, thus the term (Gij + Gji) = 2Gij = 2Gji. Using this

knowledge, rearranging terms and replacing the bi, bj components with their sinusoidal

definitions yields:

bTGb = ‖b‖2 sin2(θ)Gii + ‖b‖2 cos2(θ)Gjj

+ ‖b‖2 sin(θ) cos(θ)(2Gij) (4.14)

The trigonometric identity for the product of the sin and cos, sin A cos B, is com-

puted as 1
2
[sin(A + B) + sin(A−B)], with A = B = θ is then used to produce a final

form of the numerator, related in the first form:

‖δxh‖2 = ‖b‖2 [
sin2(θ)Gii + sin(2θ)Gij + cos2(θ)Gjj

]
(4.15)

The denominator is derived in a similar manner, noting that the S matrix is also

symmetric, resulting in the following:

‖p‖2 = ‖b‖2 [
sin2(θ)Sii + sin(2θ)Sij + cos2(θ)Sjj

]
(4.16)

Dividing the numerator by the denominator negates the bias term, leaving the ratio

of the horizontal position magnitude to the parity vector magnitude to be described by:

‖δxh‖
‖p‖ =

[
sin2(θ)Gii + sin(2θ)Gij + cos2(θ)Gjj

sin2(θ)Sii + sin(2θ)Sij + cos2(θ)Sjj

] 1
2

(4.17)

This result redefines the classic “standard slope” relationship to include a function

of the angular error relative to the expected pixel pair location in the image plane. This

formulation was independently derived based on the angular error definitions assumed in

this research, but later found to be mathematically similar to a result given in [53]. Unlike

the previous representation, this new slope definition explicitly expresses the numerator
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and denominator in terms of θ, providing more insight into angular error influence. In ad-

dition, using the trigonometric identity cos2(θ) = 1− sin2(θ), the ratio in Equation (4.17)

can be rewritten in terms of sin only:

‖δxh‖
‖p‖ =

[
sin2(θ) (Gii −Gjj) + sin(2θ)Gij + Gjj

sin2(θ) (Sii − Sjj) + sin(2θ)Sij + Sjj

] 1
2

(4.18)

Evaluating this form for θ = π/2 and θ = 0 yields the following interesting results:

‖δxh‖
‖p‖ =

[
sin2(π

2
) (Gii −Gjj) + sin(π)Gij + Gjj

sin2(π
2
) (Sii − Sjj) + sin(π)Sij + Sjj

] 1
2

=

[
(1) (Gii −Gjj) + (0)Gij + Gjj

(1) (Sii − Sjj) + (0)Sij + Sjj

] 1
2

=

[
Gii

Sii

] 1
2

(4.19)

for θ = π/2, and

‖δxh‖
‖p‖ =

[
sin2(0) (Gii −Gjj) + sin(0)Gij + Gjj

sin2(0) (Sii − Sjj) + sin(0)Sij + Sjj

] 1
2

=

[
(0) (Gii −Gjj) + (0)Gij + Gjj

(0) (Sii − Sjj) + (0)Sij + Sjj

] 1
2

=

[
Gjj

Sjj

] 1
2

(4.20)

for θ = 0. The choice of θ as either π/2 or 0 implies the cases where there is an angular

error strictly in x or y directions defined in the pixel plane coordinates, relative to each

expected element of the pixel pair. As a result, Equations (4.19) and (4.20) show that the
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“new slope” definition reduces to the standard slope for an error only on the ith or jth

measurements, respectively.

This chapter developed a rigorous baseline image-based integrity algorithm for eval-

uating the potential impact of horizontal position error as a result of measurement bias on

one or both elements of a pixel pair. The next chapter presents results and analysis of spe-

cific image-based measurement scenarios including cases where only position and both

position and attitude are being estimated by the image-based navigation system.
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V. Results and Analysis of Image-Based Integrity Algorithm

T his chapter details scenarios used for evaluation and provides results and analysis

based on the fundamental developments of Chapter IV.

5.1 Simulation Development and Parameter Definition

Although many potential applications exist for an image-based integrity method,

this research is particularly focused on the integrity risk posed in an air-to-air refueling

(AAR) scenario. With this in mind, two primary modes of operation are considered for

evaluation: 1) Estimating position only, and 2) Estimating both position and attitude. In

estimating position only, there is an assumption that a high-quality, navigation-grade Iner-

tial Measurement Unit (IMU) with very accurate attitude determination is used, in which

case the attitude errors are so small that they can be neglected, eliminating the need to

estimate attitude and related bias errors for this investigation.

For example, when considering the air-to-air refueling scenario, it is believed that

reasonable magnitudes of error could be achieved at the short distances (e.g., tens of me-

ters) in question. As a rough approximation, consider Position Error (m) ≈ Angular

error (rads) × Range to Target (m), then for an error of 0.1 degree the resulting posi-

tion error would be 0.00175 × 15m = 0.026m, or less than 3 centimeters, and would be

expect to decrease in accordance with a decrease in distance. For comparison, if the an-

gular error increased to 360 degrees, the resulting position error would grow to 94m at the

same distance, clearly unacceptable. The choices of 0.1 degree and 360 degrees are exam-

ples chosen to simply illustrate coarse position error differences as a function of attitude

error using extremes based on 1-sigma deg/hr gyro biases in low-end navigation grade (or

high-end tactical grade) and high-end Micro-Electromechanical Systems (MEMS) IMUs,

from survey data in [112].

To be clear, the term bias used throughout this chapter only refers to pixel error, rep-

resenting the case where a given feature is misidentified, not to gyro or accelerometer bias.
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When estimating both position and attitude, the error state vector and associated observa-

tion matrix are expanded to include elements associated with attitude errors, increasing

the dimensionality of both δx and H, respectively. This case still excludes gyro and ac-

celerometer bias states. Assumptions previously given in Section 4.2.1 and Section 4.3

are still held, unless otherwise stated.

The image-aided equations provided in Section 2.11 are used in simulation to build

sets of known target locations in a local reference frame, relative to a user defined vehicle

position. The discrete targets are representative of stationary landmarks at known loca-

tions, and are observable within the field of view of a calibrated camera. The direction

cosine matrix (DCM) between the camera and body is assumed fixed and known. The

DCM between the body and navigation frame is developed without error based on the

previous IMU quality assumption.

As shown in Section 4.3, a pixel bias is expressed in polar form and added to both the

x and y components of different pixel pairs, influencing one pixel pair at a time. The pixel

error is perceived as a bias on the pixel plane, potentially the result of a mismatched target

in a discrete tracking problem. The polar expression seems well suited for this application

in that an error pixel location can be reasonably described as laying at some angle θ on a

circle of radius r from the true pixel location. The H matrix is initially fixed at the truth

value to avoid non-linearities under repeated angular cycles of generated samples. A study

of linearization effects is included later in this chapter.

In reality, a wide ranging number of target locations may be observable, depending

on the scene in view. For the purposes of this research, between four and ten targets were

used. The choice to use a small target set was made to more readily demonstrate the

impact of measurement error in the image-based case, with the minimum four pixel pairs

serving as the basis for “worst case” scenarios. Adding more image-based measurements

(i.e., increasing redundancy) without adding additional errors further constrains the least

squares problem, and potentially improve the navigation solutions, as will be discussed

later. Therefore, using a reduced number of redundant equations allows for a more realistic
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examination of problematic scenarios, as well as providing clarity in the plotted results.

The approaches described here can be used with any greater number of measurements.

Table 5.1 lists six example baseline configurations of four pixel pairs each that are

used for comparisons throughout this chapter. Included in the table are three orthogonal

configurations and three different asymmetric configurations, based on a 768× 1024 pixel

plane, which are illustrated in Figure 5.1. This list is not all inclusive of all possible pixel

locations, as will be shown in later discussions of random target sets, but is designed to

provide a simple reference for later analysis.

Table 5.1: Measurement Geometry Designation and Pixel Coordinates

Geometry Geometry Pixel Pair

Identifier Description Coordinates

1a Orthogonal & (384.5, 256.25), (384.5, 768.75),

Symmetric (192.25, 512.5), (576.75, 512.5)

1b Orthogonal & (384.5, 312.5), (384.5, 712.5),

Symmetric/Equidistant (184.5, 512.5), (584.5, 512.5)

1c Orthogonal & (525.92, 371.08), (243.08, 653.92),

Symmetric/Equidistant/Rotated (243.08, 371.08), (525.92, 653.92)

2a Non-Orthogonal & (559, 919), (200, 460),

Asymmetric (Case 1) (123, 725), (630, 212)

2b Non-Orthogonal & (708, 652), (658, 117),

Asymmetric (Case 2) (234, 781), (398, 650)

2c Non-Orthogonal & (271.88, 362.39), (271.88, 724.78),

Asymmetric (Case 3) (135.94, 362.39), (407.82, 362.39)

Extensive simulations were run using various geometries, evaluating different bias

levels and random angles drawn from a uniform random distribution of at least 2000 sam-

ples with θ ∈ [0, 2π). Selected examples are provided in the following sections. The

results are shown for deterministic cases with the relational outcomes (e.g., pixel bias,
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Figure 5.1: Illustration of Pixel Geometries for Table 5.1.

horizontal position error, parity vector magnitude) shown for all angles on each example

plot. Ideally, the goal is to establish a slope trajectory that predicts the line of travel for the

horizontal position error resulting from the worst case angular error. This line would relate

to a minimal test statistic value, and thus be in the left or least direction side in a horizontal

position error vs. test statistic representational plot. Comparative performance analysis is

offered between the new algorithm and accepted GPS RAIM formulations under selected

example geometries. For clarification, the following definitions of figure legend entries

are provided, where m is the number of pixel pairs:

• Max Slope: The maximum single slope calculation based on standard RAIM (Equa-

tion (4.9))

• Max-Max Slope: The minimum value chosen between the two computations:

1. The sum of the two largest single slopes based on standard RAIM, and
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2. Slope
MAXMAX

computed using eigenvalue decomposition for two element com-

binations of possible bias locations taken two at a time (e.g., (b1, b2), (b1, b3),

(b1, b4),. . .,(b1, bj),(b2, b3),(b2, b4),. . .,(b2, bj),(b3, b4),(b3, b5). . .,(bi, bj)

for i = 1, 2, . . . , 2m− 1; j = i + 1, i + 2, . . . , 2m; i 6= j), based on [17]

• Max{ith + jth} Slope: The minimum value chosen between the two computations:

1. The sum of the individual standard RAIM slopes of the two adjacent single

slopes associated with the non-zero bias terms (bi, bj) for i = 1, 3, 5, . . . , 2m−
1; j = i + 1, and

2. Slope
MAXMAX

computed using eigenvalue decomposition for adjacent two el-

ement combinations of possible bias locations (e.g., (b1, b2), (b3, b4), . . .,(bi, bj)

for i = 1, 3, 5, . . . , 2m− 1; j = i + 1), derived based on [17]

• New Slope: The maximum slope computed using Equation (4.18) and worst case θ

value

5.2 Estimating Position Only

The investigation begins by examining performance of the “new slope” formula

under the first mode of operation, estimating position only. As a result of the high-quality

IMU assumption described in Section 5.1, Equations (4.3) and (4.5) are reduced to the

following forms:

δx =
[

δpn

]
=




δxn

δxe

δxd


 (5.1)
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and

H =

[
∂h

∂pn

]
(5.2)

5.2.1 Example 1: Orthogonal Geometry. The first simulation case examines

four pixel pairs arranged orthogonally to each other as shown in Figure 5.2, where an

error has been induced on the second pixel pair. The second pixel pair was chosen after

evaluating Equation (4.18) over all values of θ from 0 to 2π radians in steps of 1/N , where

N is the number of samples, and taking the maximum value from the set ratios of all pixel

pairs, which occurs at θ = 0 on pair number two. Figure 5.3 shows this representation,

with the solid sinusoidal line reflecting the computed values of Equation (4.18) and the the

dashed lines reflecting the results of Equation (4.9). The sinusoid results from correlation

in the x and y directions.

Recall that from Equations (4.19) and (4.20) that the standard slopes and new slopes

generated for each pixel pair intersect at 0 and π/2 radians. This is clearly seen in Fig-

ure 5.3 for orthogonal configuration 1a. In addition, due to the fact that the target rep-

resentations on the pixel plane are aligned with the image plane cardinal directions, the

standard slope values appear to bound the new slope.

As one might expect, the orthogonal positioning lends nearly equal weight to the

influences of each pixel pair on the position determination. As a result, radial error of

some bias magnitude about these locations presents a reasonably consistent level of hor-

izontal position error. This phenomena is illustrated in Figure 5.4. In this figure, and

all similar type representations, the position errors resulting from all angular errors are

simultaneously plotted for a given bias level. The result is an quasi-elliptical pattern of

deterministic position error values of each sample plotted against the test statistic values

for the same sample. Under the orthogonality condition, the quasi-elliptical pattern is

thinned to the point of almost appearing as a line as shown in Figure 5.4.
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Figure 5.2: Pixel Measurement Geometry for Example 1 (Configuration 1a).
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Slight variations in the both the orientation and length (relative to the test statistic

axis) of the pattern stem from minute differences in distance from center of the pixel loca-

tions. The different slopes defined in the previous subsection are illustrated in Figure 5.4.

It is clear to see that both the Max-Max Slope and Max{ith + jth} Slope are extremely

conservative estimates of the potential error relationship. While the conservative estimate

still bounds the potential error, it negatively impacts the potential availability. In contrast,

the standard Max slope and new slope both lie tangent to the the leftmost position error. It

should be noted that the Max-Max Slope and Max{ith + jth} Slope represented in this plot

are the computations based on the sums of the single RAIM slopes, as they are the more

conservative estimates for comparison. In fact, the Slope
MAXMAX

based on [17] produces

an undefined or “infinite” slope value in this scenario, and is thus not shown. This is due

to the precise orthogonality of the pixel pairs combined with the pixel pair correlation,

where the latter is lost through the process of taking two elements at a time that are not

necessarily adjacent and may in fact be identical, causing a singularity in the computation.
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Figure 5.4: RAIM-like Presentation for Comparison; Orthogonal Geometry (1a).

NOTE: “Max Slope” and “New Slope” overlay each other in this plot.

When pixel locations are rotated about the center of the pixel plane, the condition

described where the standard slope appears to bound the new slope no longer holds, even

though the pixel locations remain orthogonal. In these cases, the standard slope falls below

the maximum of the new slope. However, the new slope remains to the leftmost side of the

position error values while the standard slope falls below the new slope, which means the

new slope approach does a better job of describing the worst-case error. This observation

is shown in Figure 5.5 for the case where the pixel pair geometry has been rotated π/4

radians, as in configuration 1c.
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1c).
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5.2.2 Example 2: Asymmetric Geometry. Limitless possible target geometries

exist, but an example is chosen here to represent a reasonable condition where the four

pixel pairs are located roughly in four quadrants of the image plane. Although no longer

orthogonal or symmetric in distribution, the configuration would seem reasonable for ad-

mission into a potential position solution based on geometric criteria. The geometry is

illustrated in Figure 5.6, with the new slope computation shown in Figure 5.7. The max-

imum new slope value corresponds to the peak value in Figure 5.7 for pixel pair four at

the 4π
5

angular value. Note that the scale in Figure 5.7 has increased slightly over that of

the previous example case and the disparity between the amplitudes of computations for

different pixel pairs has grown as a result of the changed geometry.

Figure 5.7 shows that the standard slope values, although still intersecting at 0 and

π/2, no longer relate to the peak and minimum values of the new slope for nearly all

pixel pairs. This condition translates to Figure 5.8, where again the horizontal error to

test statistic relationship is grossly overestimated by the two more conservative dual slope

combinations, Max-Max Slope and Max{ith + jth} Slope. The sum computations are used

once again as the more conservative estimates. The singularities seen in the Slope
MAXMAX

computation in the orthogonal cases do not occur in cases 2a or 2b, where all individual x

and y elements making up the full set of m pixel pairs are unique. However, in case 2c the

Slope
MAXMAX

value is once again “infinite” due to a shared x coordinate among two of

the pixel pairs and a shared y coordinate among two others. This clearly demonstrates the

limitation of directly applying this GPS RAIM method for multiple errors to the image-

based case.

In contrast, like with the rotated case described in the previous example, the new

slope formulation is tangent to the now more visible quasi-elliptical pattern, while the

standard slope falls below the new slope. This again demonstrates that the new slope

approach best predicts the worst-case error. Figure 5.9 provides an illustration of an in-

creasing bias (evaluating over all angles at each bias step) showing that the new slope

consistently tracks the position error based on the worst angular error condition.
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Figure 5.6: Pixel Measurement Geometry for Example 2 (Configuration 2a).
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Figure 5.7: New and Standard Slope Comparison Over Varying Angles; Example 2
Asymmetric Geometry (2a). NOTE: The “New Slope” in each subplot is indicated by the
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Figure 5.8: RAIM-like Slope Presentation for Comparison; Example 2 Asymmetric
Geometry (2a).
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Figure 5.9: Increasing Bias Error Against New Slope; Example 2 Asymmetric Geome-
try (2a).
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5.2.3 Extended Analysis of Position Only Case. The influence of additive noise

and subsequent adjustments to the induced bias level to satisfy probability of missed detec-

tion requirements, as well as the impact of including the attitude states, are all important

considerations in the investigation of image-based integrity, and will be investigated in

future work. This research focuses on the immediate concern of the behavior of the “new

slope” algorithm, described in the previous sections, under changing altitude and random

pixel pair locations, and the resulting impact on the horizontal position error.

Earlier analysis illustrated the deterministic horizontal position error over [0, 2π)

angular errors at a particular bias level. Remaining analysis is concentrated on the worst

case angular error in conjunction with a chi-square threshold value generated using a se-

lected probability of false alarm and the appropriate number of degrees of freedom. A

deterministic horizontal position error is then computed for the point at which the respec-

tive maximum “new slope,” based on the worst case error and given observation matrix,

H, intercepts a fixed bias level chosen to be equivalent to the threshold value. This defini-

tion is comparable to the Approximate Radial-Error Protected (ARP) level for GPS RAIM

described in [15]. As previously mentioned, this definition is not intended to define the

horizontal protection level under noisy conditions, but does provide a crisp delineation for

comparing scenarios presented in this paper. Mathematically, this relationship is given by:

HPE
TD

= max
i=1:m

[Slopei ] TD (5.3)

or the horizontal position error (HPE) at threshold (TD). TD is the chi-squared threshold

value determined, in this case, for the 2m−n degrees of freedom, with m representing the

number of pixel pairs and n representing the number of states. The following evaluations,

like those in the previous section, consider that only four features (four pixel pairs) are

available.

Figure 5.10 shows the relationship of HPE
TD

versus altitude, with altitude rang-

ing from 0-3000m, for four specific geometries, each using four pixel pairs. These four
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baseline geometries are extensions of those presented earlier, as indicated by the numeric

prefixes in the legend entries (see Table 5.1). The orthogonal configurations, given by leg-

end entries 1a, 1b, and 1c of Figure 5.10, are also symmetric, meaning that the target pixel

locations on the pixel plane are are mirrored about an imaginary line drawn through the

center of the pixel plane. An additional equidistant term denotes that the relative distance,

in two-dimensional magnitude, between each target’s pixel location and the center of the

pixel plane, is the same for all pixel pairs. The use of the rotation term further denotes that

the relative distance from pixel plane center to each original pixel location is maintained

while the whole configuration is rotated by an angle α about a two-dimensional coordinate

axis with an origin at the center of the pixel plane. The asymmetric geometry, given by

legend entry 2a of Figure 5.10, is exactly as shown earlier in Figure 5.6.

It is clearly seen from Figure 5.10 that the value of HPE
TD

grows linearly as a

function of altitude for each given geometry. Since the bias level and worst case angle

values are fixed in each case, this growth trend is directly resultant from the change in

each “new slope” magnitude through changes in the rows of the H matrix coincident

with the increasing altitude. However, the differences in the rate of “new slope” growth

are attributed in the differences in the baseline geometries themselves. For example, the

orthogonal configurations described by 1a and 1b differ by approximately 50 pixels in

distance for two out of the four pixel locations. The ratio of the slopes between these

two cases is a constant 1.08 over each altitude value. When comparing the orthogonal,

equidistant case, 1b, to the asymmetric case, 2a, this ratio grows to approximately 1.50.

Finally, when comparing case 1b with the same configuration rotated by any angle α, as in

case 1c, the ratio is simply 1.00. This implies that an orthogonal, equidistant configuration

may approach a “best-case” baseline configuration.

Having examined behavior and potential predictability under a few selected geome-

tries, it becomes necessary to further investigate what occurs under non-predetermined ge-

ometries. Unlike in GPS scenarios, where the known satellite orbits provide a predictable

geometry, the geometry of the targets in the image-based scenario cannot always be antic-
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ipated, so it is helpful to statistically evaluate random pixel pair geometries. Simulations

were set up using 40, 000 runs each, with each iteration using four pixel locations chosen

from a random uniform distribution and the constraint that they are observable on the pixel

plane and inside of the image plane border by 50 pixels. The results are compiled as a nor-

malized histogram plotted against versus the HPE
TD

term, as shown in Figure 5.11. This

histogram does not immediately appear to fit a known statistical distribution. Therefore,

the baseline altitude was initially set to 1000 meters to allow heuristic comparisons with

the data shown in Figure 5.10.

Over the 40, 000 runs, the observed HPE
TD

value ranges from a minimum of 3.31

to a maximum of 176.5 with minor variability in the minimum (±0.3) due to bin size

selection. For clarity, the x-axis in Figure 5.11 is truncated at HPE
TD

= 60 to better

illustrate the nature of the distribution, with 0-60 chosen as the range where 99.9 percent

of the samples are represented. The highest incidence of occurrence is at HPE
TD

= 4.70,

which falls reasonably close to the 4.72 value derived from the asymmetric case, example

2a, shown in Figure 5.10 for the 1000m altitude point. In fact, this same observation holds

for 40, 000 runs taken at altitudes of 500m, 1000m, 1500m, 2000m, 2500m, and 3000m,

where the largest difference in value between the histogram peak and the corresponding

point taken from the data used in Figure 5.10 is 0.30, and only 0.15 on average. The

minimum values also compare favorably to the baseline seen in examples 1b and 1c, only

slightly larger (≤ 1) in HPE
TD

. This would seem to imply that the orthogonal, equidistant

condition is rare. Likewise, with only a small number of samples exceeding HPE
TD

= 60

value for 1000m altitude, extreme geometries are rarely encountered.

An additional analysis step was taken to further characterize the results of the his-

togram data used to build Figure 5.11, in order to further capture the impact of random

geometries on HPE
TD

determination. The data was compiled into cumulative sums ver-

sus HPE
TD

to form pseudo-continuous distribution functions for altitudes ranging from

500m to 3000m in 500m steps, as shown in Figure 5.12. Due to the spread of the data at
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the various altitudes, a logarithmic scale along the HPE
TD

axis is used in order to better

show the attributes of each curve. This representation clearly demonstrates the impact of

altitude, since the plotted distributions shift to the right in proportion to each increase in

altitude. For example, in Figure 5.12, the 99.9 percent point described earlier for 1000m

altitude actually occurs at HPE
TD

= 58.53. In comparison, increasing the altitude to

2000m then 3000m results in 99.9 percent HPE
TD

values of 115.2 and 172.8, respec-

tively. This plot consequently reinforces the importance of altitude in the determination of

a horizontal protection level for image-based navigation.
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One final observation in Figure 5.12 is that these cumulative sums based on the

empirical data indicate a “zero probability” below the minimum value observed in the

histogram. This effect is the result of the fixed threshold value used in computing HPE
TD

,

as seen from Equation (5.3). Thus, although the generation of the random geometries may

produce a near optimal configuration, or “best case” geometry, under this condition the

realization of the minimum value will not be reach zero for a non-zero threshold.

5.3 Estimating both Position and Attitude

In this section, the scenario of estimating position only is extended to investigate the

impact of adding attitude states to the position error vector, δx, and properly accounting for

the new states in the observation matrix, H. In this case, δx and H are exactly as described

in Equations (4.3) and (4.5), respectively. Incorporation of the new elements in both the

error state vector and observation matrix do not alter the slope relationship previously

derived in Equation (4.17), but the inclusion of the attitude states has a significant impact

on slope results, as will be shown in the following analysis.

This investigation is done under noise-free conditions, so the position error and

test statistics generated in simulation are deterministic. This type of evaluation allows a

clearer demonstration of the relationship between the horizontal position error magnitude

and the potential observable. The HPE
TD

metric given in Section 5.2 is again used for

performance comparisons, with TD as the chi-squared threshold value established as the

bias point. Comparisons in this case are taken between the estimating position only and

estimating position plus attitude scenarios, since GPS RAIM does not commonly take

into account the attitude states and a detailed comparison between GPS RAIM and the

case where only position is estimated was accomplished in the last section.

As described in Section 2.13.1, the threshold value is a function of both the number

of degrees of freedom and the probability of false alarm, pfa. Changing the specifica-

tion on this probability changes the corresponding threshold value, with a reduction in pfa

increasing TD and an increase in pfa reducing the value of TD. The following evalua-
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tions initially consider that only four pixel pairs are available at a fixed probability of false

alarm. Therefore, only the number of degrees of freedom differ between the two estima-

tion cases, and drive the different threshold values. Figure 5.13 illustrates this condition.

The fact that two rows of the H matrix are required for each pixel pair makes direct

comparisons based on the number of degrees of freedom impossible, since the number of

degrees of freedom will always be an odd number for the position only case and an even

number in the combined position plus attitude case. In practice, comparison based on this

metric would be impractical, even if possible, since the solutions are driven by the number

of available pixel pairs. Figure 5.13 clearly shows a difference between the slope based on

estimating position only and that based on estimating both position and attitude, and this

difference is the main focus of the following discussions.
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5.3.1 Setting Position Only Baseline. For the analysis that follows, a baseline

set of four pixel location geometries, each using four pixel pairs, is used. These four

baseline geometries are extensions of those presented in detail in Section 5.2 and are

summarized here.

There are three base orthogonal configurations. These configurations are symmetric,

meaning that the target pixel locations on the pixel plane are mirrored about an imaginary

line drawn through the center of the pixel plane. An additional equidistant term denotes

that the relative distance, in two-dimensional magnitude, between each target’s pixel loca-

tion and the center of the pixel plane, is the same for all pixel pairs. The use of the rotation

term further denotes that the relative distance from pixel plane center to each original pixel

location is maintained while the whole configuration is rotated by an angle α about a two-

dimensional coordinate axis with an origin at the center of the pixel plane. The Figure 5.13

example is based on a specific four pixel pair orthogonal, equidistant geometry like that

shown in Figure 5.14.
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The fourth base configuration is asymmetric, as previously shown in Figure 5.6.

Though limitless possible target geometries exist, this asymmetric example is chosen here

to represent a reasonable condition where the four pixel pairs are located roughly in four

quadrants of the image plane. Although no longer orthogonal or symmetric in distribution,

the configuration would seem reasonable for admission into a potential position solution

based on geometric criteria, and thus provides an example for comparison.

The magnitude of the “new slope” under the worst angular error condition is strongly

influenced by altitude through the formulation of H and the subsequent pseudoinverse op-

erations. As the distance between the target and the camera platform grows, so too does

the peak value of the “new slope.” A comparison is shown through Figure 5.15 and Fig-

ure 5.16, which are evaluations of the slope algorithm in the asymmetric geometry for the

position only case. These evaluations are taken over all values of possible angular errors,

at altitudes of 1000m and 2500m, respectively, with the latter replicating Figure 5.7.

Noting the difference in scale, the ratios of the respective slopes for each pixel pair at

the two different altitudes is found to be equivalent to the ratios of the altitudes themselves,

indicating a linear relationship. This condition is even more evident in the symmetric

geometries. It should be noted that the straight lines shown across each of the subplots

reflects the conventional RAIM slope formulation for comparison, and to observe that the

“new slope” is sensitive to changes in the angular error, while the basic RAIM model is

not.
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5.3.2 Estimating Position and Position Plus Attitude. These observation led

to the comparisons between the slope based on position only and that based on both the

position and attitude states being taken over an altitude range of 0m to 3000m. Figure 5.17

shows the relationship of HPE
TD

versus altitude for the position only case in the four spe-

cific geometries, each using four pixel pairs. The three orthogonal configurations are given

by legend entries 1a, 1b, and 1c, and are further identified as equidistant and/or rotated.

The asymmetric geometry, given by legend entry 2a of Figure 5.17, is exactly as shown

earlier in Figure 5.6 (for pixel coordinate association with legend entry see Table 5.1).

Figure 5.18 provides an equivalent representation, where now the slopes are based on the

both the position and attitude states incorporated into the slope algorithm.

Figure 5.17 reprises the estimating position only versus altitude plot shown ear-

lier in Section 5.2.3. Recall from that section that the ratio of the trajectories between

the orthogonal configurations described by lines 1a and 1b was a constant 1.08 over each

altitude value in the position only case. The ratio when comparing the orthogonal, equidis-

tant geometry, 1b, to the asymmetric geometry, 2a, rose to approximately 1.50. Finally,

the comparison between the 1b line with the same configuration rotated by any angle α, as

in line 1c, yielded a ratio of 1.00.

Similar relationships also can also be seen in the position plus attitude case using

the same geometries, as shown in Figure 5.18. In this illustration, the relative comparisons

between the different geometries are on the same order as those seen in the position only

case. Specifically, the ratio between the geometries represented by lines 1a and 1b show a

ratio of 1.27, while the ratio between the asymmetric and perfectly symmetric geometries,

lines 2a and 1b, respectively, is 1.98.
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A significant result is seen when comparing the two cases, estimating position only

and estimating position plus attitude, across common geometries. When comparing the

asymmetric geometry in the two cases, the position plus attitude result is a constant 46.24

times larger than the position only result. Although the two case use a different TD value

to formulate the horizontal position error at threshold, the change in TD, due to a differing

number of degrees of freedom, only accounts for about 1 percent of the difference and,

if it were the only factor, would actually reduce the difference between the two cases.

Instead, the key contributor to the 46.24 factor difference is the change in the new slope

computation when estimating both position and attitude. Figure 5.19 shows the new slope

evaluations over all angles for each pixel pair in this asymmetric geometry, now taking

into account the addition of the attitude states.
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Figure 5.19: Slope Comparison Over Varying Angles in Estimating Position and Atti-

tude; Asymmetric Geometry (2a) at 1000m Altitude. NOTE: The “New Slope” in each

subplot is indicated by the solid line, while the “Standard Slopes,” which produce the

same result as the “New Slope” evaluated at both θ = 0 and θ = π/2, are indicated by the

dashed lines.
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Examination of Figure 5.19 reveals that there is now a pronounced peaking that is

occurring in what were formerly more sinusoidal new slope evaluations shown earlier in

Figure 5.15 for the estimating position only case. Figure 5.19 also shows that the addition

of the attitude states can change the determination of which pixel pair has the greatest

influence on the integrity calculation, where in this case the maximum new slope value is

found in the evaluation of pixel pair 1, while in the position only case the maximum value

is found in the evaluation of pixel pair 4. Since the new slope approach is extracting the

largest value of any pixel pair corresponding to the worst case error in terms of an angular

anomaly, the differences in the trajectories observed between Figure 5.17 and Figure 5.18

should be expected based on this observation. Similar results occur when comparing the

two estimation case in orthogonal geometries. In the symmetric, equidistant geometries,

the position plus attitude amplification is 34.87 over the position only case, while the

simple orthogonal geometry result is 41.14 times greater in the estimating position plus

attitude case than in the estimating position only case.

The underlying cause for the dramatic change between the cases is attributed to the

addition of the columns associated with the attitude states being added to the H. These

changes in H amplify the magnitude of the H matrix in the numerator of Equation (4.18),

since the construct contains new columns of terms greater than 1. At the same time,

the magnitude of the denominator, a function of the Parity matrix, P, decreases slightly.

Geometry plays a key role in the final computation due to what can be called a phasing

scenario. In orthogonal geometry, the denominator remains relatively constant over all

angles in the new slope, but under asymmetric geometry, the denominator exhibits a more

pronounced sinusoidal behavior, in some cases directly out of phase with the numerator,

thus amplifying the overall ratio and creating the peaking effect. This clearly demonstrates

the impact of estimating attitude on any evaluation of a horizontal protection level.

Evaluations comparing the new slope algorithm developed in Chapter IV with the

basic RAIM Slope, Max-Max Slope and Max{ith + jth} Slope are also done for the new

estimating both position and attitude scenario. Aside from the increase in slope magnitude
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across the board, the results are consistent with those described in Section 5.2, with one

notable exception. It was found that when adding the attitude states, the Max{ith + jth}
Slope derived from [17] yields the same value as the proposed new slope formulation.

However, this observation only appears to be true in the four pixel pair scenario, where

there are 2m−n = 2 degrees of freedom. When more pixel pairs are added, the Max{ith +

jth} Slope once again becomes very conservative while the new slope algorithm remains

tangent to the position error to test statistic ratio at the worst-case angular value.

Having examined behavior and potential predictability under a few selected geome-

tries, it becomes necessary to further investigate what occurs under non-predetermined

geometries. Simulations were set up using 40, 000 runs each, with each iteration using

pixel locations chosen from a random uniform distribution and the constraint that they are

observable on the pixel plane and inside of the image plane border by 50 pixels. Simulated

data was taken for four different redundancy conditions, using 4, 6, 8 and 10 pixel pairs.

The results are compiled as a normalized density plotted against the HPE
TD

term,

as shown in Figure 5.20 and Figure 5.21 for the position only and position plus attitude

cases, respectively. These histograms do not immediately appear to fit a known statistical

distribution. Therefore, the baseline altitude was initially set to 1000 meters to allow

heuristic comparisons with the data shown in Figure 5.17 and Figure 5.18. The direct

comparisons are made only to the first subplot, which in each of the two error-state cases

is the representation of the four pixel pair condition and the condition upon which the

earlier geometry comparisons were drawn.

In the position only case, a new set of data is taken based on the same parameters

as in Section 5.2.3. Over the 40, 000 runs, the observed HPE
TD

value ranges from a

minimum of 3.24 to a maximum of 259.36, a maximum much larger than the 176.5 value

observed in the previous test. In order to clearly show the distribution in this first subplot

in Figure 5.20, the distribution plot is again truncated at the value corresponding to the

99.9 percent of the distribution, which falls at a value of HPE
TD

= 57, compared to

HPE
TD

= 60 earlier. So, although the value of the maximum outlier jumped by a signif-
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Figure 5.20: Normalized Densities vs. HPE at Threshold; When Estimating Position
Only.

icant margin, the cut-off limit containing 99.9 percent of the samples has stayed relatively

consistent. The highest incidence of occurrence is at HPE
TD

= 4.62, which falls rea-

sonably close to the 4.72 value derived from the asymmetric case, example 2a, shown in

Figure 5.17 for the 1000m altitude point. In fact, this same observation holds for 40, 000

runs taken at altitudes of 500m, 2000m, and 2500m, where the largest difference in value

between the histogram peak and the corresponding point taken from the data used in Fig-

ure 5.17 is 0.22, or 0.16 on average. Again, the minimum values also compare favorably

to the baseline seen in examples 1b and 1c, only slightly larger (≤ 1) in HPE
TD

. This

would seem to imply that the orthogonal, equidistant condition is rare. Similarly, extreme
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geometries also appear rare from this data, with only small number of samples exceeding

the new HPE
TD

value.

The additional subplots clearly demonstrate the impact of adding additional pixel

pairs to the computations. As the redundancy increases, the distribution tightens with

fewer and fewer large outliers persisting. In addition, although the geometries are random,

the addition of more and more pixel locations increase the likelihood of better geometries.

As a result, even with a possible increase in the threshold value due to changes in the num-

ber of degrees of freedom, the magnitude of the worst case slope can decrease resulting in

a net reduction in HPE
TD

values overall.

The distributions for the position plus attitude case, shown in Figure 5.21 take on a

similar appearance to those of the position only case. However, the addition of the attitude

states, which have been shown to dramatically increase the “new slope” value, and the

large sample population create an incredibly wide dispersion of HPE
TD

possible values.

For example, although the distribution is shaped like that in the position only estimation

case, the range of values in this four pixel pair scenario ranges on the orders of 101 to 107.

In order to clearly present the data, the x-axis for the subplots in Figure 5.21 have been

plotted in log scale. Again, the comparison with Figure 5.18 applies only to the first plot.

The most frequently occurring value in the four pixel pair subplot of Figure 5.21 is

estimated at 194, which compares reasonably well to the 218 value taken at 1000m altitude

in the group plot versus all altitudes of Figure 5.18. The minimum value is found to be

close to 33.84 which is significantly lower than that estimated for the symmetric, equidis-

tant line given in Figure 5.18 for 1000. Some degree of error is attributed to both the

requirement for coarser discretization of the histogram to cover such a broad range of val-

ues and the higher degree of variability the added attitude states bring to the computation,

as previously discussed.

It also clear that a large number of random geometries create extremely large values

in HPE
TD

, so large in fact that a horizontal protection level defined in these extremes

would not likely serve meaningful applications. The subsequent subplots in Figure 5.21,
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Figure 5.21: Normalized Densities vs. HPE at Threshold; When Estimating Position
and Attitude (Note Log Scale).

each considering additional pixel pairs, show once again that increasing the number of

pixel pairs drastically reduces the magnitude of outliers, in this case bringing the order of

magnitude of the extreme values down by approximately four orders of magnitude and into

the hundred meter range. Even in this case, there is a very significant benefit to knowing

attitude to minimize the need for error estimation.

An additional analysis step was taken to further characterize the results of the his-

togram data used to build normalized density plots, in order to further capture the impact

of random geometries on HPE
TD

determination. The data was compiled into cumula-

tive sums versus HPE
TD

to form sets of pseudo-continuous distributions functions, as
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shown in Figure 5.22 through Figure 5.25 for the 500m, 1000m, 1500m, 2000m, 2500m

and 3000m altitude results.

Both error-state configurations are represented in the series of plots, with examples

shown for four and eight pixel pair assumptions. Plotted in log scale along the x-axis,

these cumulative sums based on the empirical data indicate a “zero probability” below

the minimum value observed in the histogram. This is consistent with the idea that there

is no perfect geometry, only a minimum baseline. These plots once again reinforce the

impact of altitude on the determination of a horizontal protection level for image-based

navigation.
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Figure 5.22: Cumulative Densities Using 4 Measurements; When Estimating Position

Only.
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Figure 5.23: Cumulative Densities Using 4 Measurements; When Estimating Position

and Attitude States.
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Figure 5.24: Cumulative Densities Using 8 Measurements; When Estimating Position

Only.
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Figure 5.25: Cumulative Densities Using 8 Measurements; When Estimating Position

and Attitude States.

5.4 Influence of Geometry on Image-Based Integrity

The results presented in the last section demonstrate a consistency in data structure

that emerges from histograms compiled for HPE
TD

values evaluated over large sample

sets of possible pixel locations. These results also clearly show the benefit of increasing

redundancy in reducing the spread of the potential outcomes and illustrate the potential for

improvement in image-based integrity by limiting the maximum HPE
TD

value that may

be observed. These observations motivate the additional exploration into the potential
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to improve image-based integrity through a focused approach to increasing redundancy

described in this section.

In the following analysis, specific four pixel pair cases taken from Table 5.1 are

used to form baseline geometries, and the worst-case slope, denoted maxi=1:4 [Slopei ],

is calculated. Simulations are then run adding a fifth target at pixel location (xj, yk) for

j = 1 : M,k = 1 : N in p pixel steps, where M is the maximum number of pixels in

the x-pixel plane direction and N is the maximum number of pixels in the y-pixel plane

direction. A new worst-case slope for the five pixel pair case, maxi=1:5 [Slopei ], is com-

puted at each step. This evaluation is motivated by an interest in finding ways to improve

image-based integrity not just by adding an additional target to increase redundancy, but

also determining specific added target locations that would provide the greatest benefit.

This knowledge could aid image-based algorithms in selecting groups of targets based on

their integrity potential.

Composite results for estimating position only, followed by the same geometry eval-

uated for estimating both position and attitude, for two orthogonal cases and all three

asymmetric cases are shown in Figures 5.26 through 5.33. As described in the previous

paragraph, each subplot in these figures is a function of the location of the added, fifth,

pixel pair with an evaluation done at each new location and the results plotted over the full

image-plane dimensions. In each of the figures, the top left subplot is the HPE
TD

metric

evaluated for the five pixel pair case. For comparison, the top right subplot is the HPE
TD

metric evaluated for the five pixel pair case normalized by the four pixel pair worst-case

slope value, maxi=1:4 [Slopei ] times the five pixel pair case threshold value. The intent

of the normalization is to illuminate the amount of improvement resulting from the added

pixel pair. Using the same TD value, based on a fixed pfa and the number of degrees

of freedom in the five pixel pair case, ultimately reduces the comparison to a ratio of the

worst-case slopes for the five and four target cases, respectively.

Two additional subplots are added to each figure. The bottom left subplot is de-

signed to show the pixel pair responsible for the worst-case slope in the five pixel pair
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case. Although the colorbar to the right of this subplot shows a graduated scale, the val-

ues displayed in the subplot are all integer values. The subplot in the lower right of each

figure is the standard deviation of horizontal position, σh based on (HTR−1H)−1, with

R = σ2I, such that σh = σ
√

(HTH)−1
11 + (HTH)−1

22 , and σ = 1 in the cases shown.

Specifically, Figures 5.26 through 5.29 show the position and position plus attitude

cases for the orthogonal configurations 1a and 1b, respectively. The symmetry of the pixel

locations produces symmetry in all of the corresponding plots. Plots of HPE
TD

in the

upper two subplots of the position only cases show that the HPE
TD

is more effectively

reduced going from the four pixel pair case to the five pixel pair case, in general, when the

added pair falls in the regions either inside all of the baseline pixel pairs or when it falls on

a line originating from the center of the pixel plane and radiating out between pixel pairs.

The “influence” subplot in the lower left hand corner, indicating the pixel pair with the

greatest influence on the worst-case slope at each step, more clearly shows that this line

is the transition region between between influence regions established by the individual

pixel pairs.

The regions exhibiting the worst HPE
TD

values in the top two subplots estimating

position only tend to fall on lines that radiate from the center out through the baseline

pixel locations, showing that added pixel pairs outside of the baseline locations that share

an x or y coordinate value (or approximate value) do not improve the integrity. The “nor-

malized” subplot in the upper right corner in fact shows that there is a potential to make

the HPE
TD

value worse by adding another image-based measurement. This development

seems counter-intuitive, and as a result is investigated in greater detail later in this chapter

using a GPS analogy (see Section 2.5). The standard deviation of the position only esti-

mation cases falls below the HPE
TD

values in all cases. Recall that the HPE
TD

metric

is also a square-rooted term based on Equation (4.18).

Continuing with Figures 5.26 through 5.29, the estimation using both position and

attitude also display excellent symmetry, which is reasonable given the symmetric distri-

bution of the pixel pairs. However, the nature of the influence pattern of the individual
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pixel locations is clearly different from the position only case. The magnitude of the

HPE
TD

metric has increased across all plots, as expected, but there is also a high degree

of variability in both the HPE
TD

term and the regions of influence for a given pixel pair.

This variability is potentially tied to a phasing phenomenon in the new slope computation,

where with the addition of the attitude states to the H matrix, the sinusoidal representa-

tions of the new slope calculation, as exemplified in Figure 5.3 for the estimating position

only case, now become closer to in-phase for all of the pixel pairs. In the symmetric

cases discussed, the amplitudes for the new slope computations are also closer in relative

value. These facts, coupled with a sizeable change in relative scale between the H ma-

trix elements related to the position states and those related to the attitude states, serve to

increase numerical sensitivity to small changes in the attitude formulations, meaning that

minor shifts in the angular error can cause exaggerated growth in the HPE
TD

term. This

concept is probably best seen in the lower left subplot of Figure 5.29, where the target that

has the worst-case slope varies significantly over the different geometries represented by

changing the location of the fifth target.

Similar observations can be made in the asymmetric cases shown if Figures 5.30

through 5.33. However, in these cases there is more often significant improvement in the

integrity metric, HPE
TD

, between the baseline four pixel pair case and five pixel pair

case as most clearly shown in the “normalized” subplots in the upper right corner of each

figure. In comparison with the symmetric cases, where the best-case improvement was on

the order of 20−30 percent, the improvement seen in these asymmetric cases goes as high

as 80 percent in the estimating position plus attitude cases.
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Figure 5.26: Impact of Adding New Measurement in Estimating Position Only Case,

Symmetric Geometry (1a). Top Left: HPETD as function of new pixel pair added to

baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added to

baseline four pixel pair set, normalized by the maximum new slope in the four pixel pair

case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence; Bottom

Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.27: Impact of Adding New Measurement in Estimating Position and Attitude

Case, Symmetric Geometry (1a). Top Left: HPETD as function of new pixel pair added

to baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added

to baseline four pixel pair set, normalized by the maximum new slope in the four pixel

pair case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence;

Bottom Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.28: Impact of Adding New Measurement in Estimating Position Only Case,

Symmetric Geometry (1b). Top Left: HPETD as function of new pixel pair added to

baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added to

baseline four pixel pair set, normalized by the maximum new slope in the four pixel pair

case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence; Bottom

Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.29: Impact of Adding New Measurement in Estimating Position and Attitude

Case, Symmetric Geometry (1b). Top Left: HPETD as function of new pixel pair added

to baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added

to baseline four pixel pair set, normalized by the maximum new slope in the four pixel

pair case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence;

Bottom Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.30: Impact of Adding New Measurement in Estimating Position Only Case,

Asymmetric Geometry (2a). Top Left: HPETD as function of new pixel pair added to

baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added to

baseline four pixel pair set, normalized by the maximum new slope in the four pixel pair

case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence; Bottom

Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.31: Impact of Adding New Measurement in Estimating Position and Attitude

Case, Asymmetric Geometry (2a). Top Left: HPETD as function of new pixel pair added

to baseline four pixel pair set; Top Right: HPETD as function of new pixel pair added

to baseline four pixel pair set, normalized by the maximum new slope in the four pixel

pair case multiplied by the new TD value; Bottom Left: Regions of pixel pair influence;

Bottom Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.32: Impact of Adding New Measurement in Estimating Position Only Case,

Second Asymmetric Geometry (2b) Example. Top Left: HPETD as function of new pixel

pair added to baseline four pixel pair set; Top Right: HPETD as function of new pixel

pair added to baseline four pixel pair set, normalized by the maximum new slope in the

four pixel pair case multiplied by the new TD value; Bottom Left: Regions of pixel pair

influence; Bottom Right: Standard deviation of the horizontal position error (in meters).
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Figure 5.33: Impact of Adding New Measurement in Estimating Position and Attitude

Case, Second Asymmetric Geometry (2b) Example. Top Left: HPETD as function of

new pixel pair added to baseline four pixel pair set; Top Right: HPETD as function of

new pixel pair added to baseline four pixel pair set, normalized by the maximum new

slope in the four pixel pair case multiplied by the new TD value; Bottom Left: Regions of

pixel pair influence; Bottom Right: Standard deviation of the horizontal position error (in

meters).
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5.5 Investigation of Failure to Improve Integrity by Increasing Redundancy

As shown earlier, when changing from a baseline four pixel pairs to a new five pixel

pair case in the image-based scenario, the HPE
TD

plotted over varying possible locations

for the added pixel pair showed that the addition of another pixel pair (increasing overall

measurement redundancy) was not guaranteed to improve the worst case value of HPE
TD

over the lower measurement case. This result seemed counterintuitive and was not per-

fectly anticipated. In order to draw a comparison to satisfy the question as to whether it

could be possible to indeed worsen an expected position error bound by increasing the

measurement redundancy, analysis was done using the GPS RAIM methodology, which

is more mature in its development than image-based integrity.

Recall that the HPE
TD

function uses the worst case slope multiplied by a bias term

set to be equivalent to the chi-square threshold value computed using a fixed probability

of false alarm (pfa) and the number of degrees of freedom (dof) in the formulation (e.g.,

for the GPS case the dof is given as m − n and for the image-based case the dof is given

by 2m− n, where m is the number of targets and n is the number of states).

It is important to note that, when the number of targets is increased, the number of

degrees increases resulting in a different threshold value. For direct comparison between

cases involving a different number of targets, the largest threshold value is used in both

cases to provide additional commonality between the cases and limit the difference in

HPE
TD

to only a function of the worst case slope. To begin, the first observation matrix

chosen for this operation was the well established six GPS pseudorange measurement set

published in [18]:
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H =




0.7460266527 −0.4689257437 0.4728137904 1

−0.8607445743 −0.3446039300 0.3746557209 1

0.2109370676 0.3502943374 0.9125784518 1

−0.0619331310 −0.49677359072 0.8656891623 1

−0.7248969588 0.4759681238 0.4979746422 1

−0.4009266538 0.1274180997 0.9072058455 1




(5.4)

with the subsequent slope calculation producing:

Slopes = [2.14370 1.09937 0.91676 1.22794 1.19918 0.27536] (5.5)

The resultant HPE
TD

is found to be 11.70785 using the m − n = 6 − 4 = 2

degrees of freedom. Using the maximum slope for the six measurement case shown, but

increasing the number of degrees of freedom to 3, subsequently changing the threshold

value, increases the HPE
TD

to 12.30139. For comparison, by introducing a new row into

the observation matrix given in Equation (5.4), with the values of the new row chosen to

be the same as those seen in row two of Equation (5.4), the slopes change to the following:

Slopes = [2.16114 0.43942 0.72751 1.10406 1.22625 0.25898 0.43942] (5.6)

with the HPE
TD

value calculated for 3 degrees of freedom equal to 12.40145. This means

that for the same bias level, which is chosen to be threshold value for the higher number

of measurements in these scenarios, the worst case HPE
TD

actually increases slightly

when adding an additional measurement in the specific geometry shown. The ratio of the

change is a modest 1.008, but this change is on the order observed in the image-based case,

where normalization by the lower number of measurements values, adjusted for degrees
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of freedom, were in the range 1 - 1.03. It should also be noted that in the image-based

case, the dof increases by two due to the measurement pair structure.

Recall that this study was intended to demonstrate that the non-intuitive result is

possible, even in a well-known case, removing concern that the non-intuitive result is

incorrect in the image-based case. This required at least one specific example where an

increase in redundancy did not serve to reduce the HPE
TD

level when compared to a

lower number measurement case. The observation matrix for this baseline example was

selected because it is well published and easily verifiable. The fact that two GPS satellites

would not actually appear in the same exact position was put aside to show the influence of

the mathematics. As another example, a different observation matrix was generated, using

newer GPS data from GPS week 1408 relative to a user position near Palmdale, California,

inspired by a scenario seen in [119]. Selecting five GPS measurement observations from

this scenario, the generated H matrix is:

H =




0.420274479662478 −0.240841355313369 0.874851303545496 1

0.299507979739954 0.375272152076612 0.877191986937797 1

−0.419134304977878 0.217386297643779 0.881515531336483 1

0.613074918463151 0.673941277080147 0.41224058436668 1

−0.127580307459073 −0.784866372842578 0.606389348463166 1




(5.7)

with the resulting slope values

Slopes = [1.83485 0.50424 3.45636 2.40915 2.41307] (5.8)

An additional satellite is actually available and, for comparison, added to the obser-

vation matrix in the last row:
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H =




0.420274479662478 −0.240841355313369 0.874851303545496 1

0.299507979739954 0.375272152076612 0.877191986937797 1

−0.419134304977878 0.217386297643779 0.881515531336483 1

0.613074918463151 0.673941277080147 0.41224058436668 1

−0.127580307459073 −0.784866372842578 0.606389348463166 1

0.277903971977838 −0.0720360230624255 0.95790406291042 1




(5.9)

with the slope values changing as follows:

Slopes = [0.98560 0.36975 3.48776 1.91840 2.41001 0.48353] (5.10)

When comparing Equation (5.8) and Equation (5.10) it is clear that the dominant

slope is still the number three element, but the value has increased slightly while most

other elements have decreased or remained nearly unchanged. Using the same bias level

to compare HPE
TD

between the five and six measurement sets in this scenario, the

value of HPE
TD

again increases with increase in redundancy, changing from 18.87692

to 19.04842 for this specific examination. The ratio of change between the six measure-

ment and five measurement cases, respectively, is 1.009, again consistent with the range

observed in the image-based case. The result is increased confidence, that under the con-

ditions posed in the investigation of geometry in the image-based measurements, it is

possible that adding additional measurements, thereby increasing redundancy, does not

guarantee an improvement of HPE
TD

over all possible geometries. This consequence

also reinforces the importance of geometry screening, where possible, in both GPS and

image-based navigation integrity methods.
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5.6 Investigation of Linearization

An additional study was done in this dissertation to examine the behavior of the

HPE
TD

metric under potential linearization error with respect to estimating position only.

Simulations were done by first using a baseline geometry using different subsets from Ta-

ble 5.1 to build truth target locations relative to a known vehicle position in the NED

reference frame. Then errors in vehicle position were sequentially introduced in first the

North and then the East coordinates of the vehicle while the truth targets remained un-

changed. The H matrix was recomputed at each instance of error and used to formulate

a new HPE
TD

value for each point. Figures 5.34 through 5.37 show the results for four

selected cases, 1a,1b,2a, and 2c, which are two symmetric and two asymmetric examples.

In each of the figures there are two columns of subplots, reflecting the results for

two different altitudes (or ranges to a target plane). The column on the right is for a

distance of 1000m, while the column on the left is for a distance of 15m, with the shorter

distance chosen to be more likely encountered in the air-to-air refueling scenario discussed

earlier in the chapter. A baseline HPE
TD

value based on the true H matrix is plotted in

conjunction with the HPE
TD

resulting from the linearization error in a given direction,

identified on the x-axis of the plots. Vertical lines reflecting the ±6σ thresholds are also

shown.

Values taken from the simulations are summarized in Table 5.2, with N and E

denoting the North and East directions, respectively. The ||∆HPE
TD
|| term used in the

last column describes the absolute value of the distance between the baseline HPE
TD

and the HPE
TD

resulting from error, as measured at the ±6σ thresholds in North and

East (N/E). The value of ||∆HPE
TD
|| was found to be equivalent on either side of the

zero point in each directional test for each case. It should be noted that the values for the

1000m distance are recorded in meters while those for the 15m distance are recorded in

centimeters.
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Figure 5.34: HPE
TD

versus Linearization Error for Symmetric Geometry (1a). Left

column of subplots reflect 15m distance while right column of subplots show results for

1000m (Note difference in scales between left and right columns).
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Figure 5.35: HPE
TD

versus Linearization Error for Symmetric Geometry (1b). Left

column of subplots reflect 15m distance while right column of subplots show results for

1000m (Note difference in scales between left and right columns).
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Figure 5.36: HPE
TD

versus Linearization Error for Asymmetric Geometry (2a). Left

column of subplots reflect 15m distance while right column of subplots show results for

1000m (Note difference in scales between left and right columns).

193



−0.05 0 0.05

12.8

13

13.2

North Linearization Error (m)

H
P

E
T

D
 (

cm
)

 

 
HPE

TD
 no error

HPE
TD

 with error

± 6σ bounds

−0.05 0 0.05

12.8

12.9

13

13.1

13.2

East Linearization Error (m)

H
P

E
T

D
 (

cm
)

 

 
HPE

TD
 no error

HPE
TD

 with error

± 6σ bounds

−5 0 5

8.5

8.6

8.7

8.8

North Linearization Error (m)

H
P

E
T

D
 (

m
)

 

 
HPE

TD
 no error

HPE
TD

 with error

± 6σ bounds

−5 0 5
8.5

8.6

8.7

8.8

East Linearization Error (m)

H
P

E
T

D
 (

m
)

 

 
HPE

TD
 no error

HPE
TD

 with error

± 6σ bounds

Figure 5.37: HPE
TD

versus Linearization Error for Asymmetric Geometry (2c). Left

column of subplots reflect 15m distance while right column of subplots show results for

1000m (Note difference in scales between left and right columns).
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Table 5.2: Linearization Summary; Estimating Position Only

Geometry Range to 1σ Value Baseline ||∆HPETD || between
Identifier Target (σN /σE) (no error) no error and error

HPETD cases at ±6σ (N/E)

1a 1000m 0.70m/0.70m 3.40m 0.05m/0.001m
15m 1.05cm/1.05cm 5.10cm 0.07cm/0.02cm

1b 1000m 0.70m/0.70m 3.16m 0.05m/0.05m

15m 1.05cm/1.05cm 4.73cm 0.07cm/0.07cm

2a 1000m 0.71m/0.70m 4.72m 0.04m/0.02m

15m 1.07cm/1.05cm 7.08cm 0.06cm/0.03cm

2c 1000m 0.73m/0.82m 8.65m 0.10m/0.08m

15m 1.1cm/1.2cm 12.98cm 0.15cm/0.11cm

When evaluating the plots it is clear to see that in nearly all instances the HPE
TD

error-based line is nearly perfectly linear between the thresholds, with one exception. In

the symmetric geometry case, 1a, of Figure 5.34 the plots of the East directional error

appear parabolic. Since the scale of the change is very small across the region of interest

(on the order of fractions of millimeters), the change in HPE
TD

can be still be considered

reasonably linear. What is interesting to note is that when comparing this figure of case

1a with Figure 5.35 for case 1b, the parabolic shape can be attributed to the fact that

the pixel locations are not equidistant in the former case. This demonstration mimics

that seen earlier in the geometry study with Figures 5.26 and 5.28 where the smallest

values of HPE
TD

fall in a rectangular region in the first plot and a nearly perfect square

in the second. The directions have changed in the linearization plots due to coordinate

transformations.

Comparisons between results at the two different ranges show a consistent scaling

across the different parameters. For example, when taking the ratios of the σ values, the

ratios of the HPE
TD

baselines, or ratios of the ||∆HPE
TD
|| between the 1000m and 15

meter ranges, the results match the ratio of the distances themselves, 1000/15. This is
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consistent with the observations made earlier when comparing HPE
TD

versus altitude for

the different cases. It is suspected that this would be true in most cases under the present

assumptions, since the worst-case angular error is amplified by a particular geometry, and

if the geometry is consistent when changing the range parameter, the worst case new slope

should also stay consistent.

In general, there do not appear to be significant problems with linearization inside

the regions of interest in this data. Several factors may help account for this fact. First,

the analysis is done under the assumption that the target locations are known. In the

study by [119], errors resulting from target estimation were thought to negatively impact

linearization. Secondly, this investigation is using a least-squares method on an epoch-by-

epoch basis, avoiding potential accumulation of errors in an Extended Kalman Filter. Re-

cently uncovered work by [52] attempts to address such errors with the Extended Kalman

Filter by evaluating the H matrix using the target estimate from the first time it is detected,

sacrificing accuracy in the observation matrix for stability of the system.

Initial investigation was also done regarding linearization when estimating both po-

sition and attitude. However, comprehensive results were not achievable, and are left to

future work. What is known, or at least suspected, is that inclusion of attitude should cre-

ate heightened sensitivity due to the attitude errors influencing the DCM relating the body

and navigation frame, which impacts both position and attitude elements in the H matrix.

The next chapter provides a summary and additional conclusions, as well as identi-

fying the contributions to the state of science accomplished through this research.
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VI. Conclusions

T his dissertation develops an initial framework for image-based integrity, extend-

ing GNSS integrity concepts to an image-based navigation system dependent on an

entirely different measurement structure. This chapter first presents conclusions and dis-

cussions regarding the total research effort. Potential areas of future related research are

then described before a final brief summary is given.

6.1 Conclusions

This research effort has established an initial framework for image-based naviga-

tion integrity through a series of significant steps described in the following paragraphs.

The work presented in this dissertation is the first known investigation into image-based

integrity, and was accomplished with the purpose of establishing a performance baseline

for image-based navigation integrity and presenting the development and analysis in terms

that could be easily understood by the navigation community. An assured navigation so-

lution is of critical importance in navigation systems supporting safety-of-flight and/or

safety-of-life operations, and thus, as image-based navigation becomes a viable augmen-

tation or alternative to GNSS navigation, it is necessary to develop this baseline now. As

mentioned in earlier chapters, GNSS integrity has been the subject of extensive research

for more than two decades and even now continues to evolve. A significant goal of this

dissertation was to initiate a similar magnitude research vein for image-based navigation

systems.

A key contribution of this research is in the rigorous development of a mathemat-

ical relationship relating the horizontal position error, which is not directly observable,

to an associated test statistic that is outwardly observable, in the bearing-type measure-

ment case of the image-based navigation systems described in this document. The GNSS

community developed a core relationship, focusing primarily on single-failure or uncor-

related two-failure type conditions of pseudorange measurements. This research extends
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these concepts in developing an approach to address the impact of angular errors influenc-

ing the image-based measurements composed of paired elements potentially having both

elements corrupted by such error.

The algorithm developed and evaluated in this research is shown to handle cases

where a single element of the pixel pair is affected by a bias term, paralleling the result

of proposed GNSS RAIM algorithms when treating each element as an individual mea-

surement. However, where the basic GNSS RAIM algorithm fails to compensate for an

additional adjacent element of the image-based measurement containing a bias, the newly

developed algorithm produces a value indicative of the horizontal position error and test

statistic relationship allowing prediction of the worst case position error, in a determinis-

tic evaluation, relative to a specified threshold defined by user probability of false alarm

requirements. In addition, GNSS concepts for handling dual biases appear to be con-

servative, and not ever observed to be more precise in this research, than the framework

described in this research effort, which accurately predicts the “worst-case” result while

improving availability, in the deterministic evaluations, over the former conservative ap-

proach.

Another contribution in this research is the evaluation of the impact of attitude on

the image-based integrity result. The results show that when extending the image-based

navigation problem from one where only position estimation is done to one where both

position and attitude are being estimated, there is a significant increase in the magnitude

of the potential horizontal position error before possible detection at a defined threshold

could occur. This heightened uncertainty created through the required augmentation in

the observation matrix, combined with the fact that the image-based errors are expected

to exhibit angular error characteristics, create a high degree of sensitivity in the integrity

model evaluated here. This drives the assertion that integrity in image-based navigation is

significantly benefitted when mechanisms for attaining high accuracy attitude information

are employed (e.g., use of high-quality IMUs).
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Additional contributions seen in this research include the study and evaluation of

the relationship between the image-based integrity performance metric and altitude, the

investigation and evaluation of the impact of geometry on image-based navigation in-

tegrity, and examination of linearization when estimating position only, with respect to

the image-based integrity performance metric. In evaluating image-based integrity over

multiple altitude scenarios, a linear growth pattern was observed, one that enhances the

ability to make coarse predictions regarding potential integrity limits, potentially before

a specific pixel pair geometry is known. Recall that unlike in a GNSS scenario, where

the satellite orbits are known and navigation integrity based on known geometries can be

predicted, the image-based measurement geometries are not necessarily predictable, re-

quiring an epoch-by-epoch approach. Thus, any a priori information available to the user

in an image-based scenario, like altitude, may enhance integrity.

Specifically focusing on geometry, the evaluation of large numbers of random ge-

ometries in scenarios based on varying numbers of pixel pairs, show that similar empirical

distributions start to emerge allowing, at a minimum, calculations on the order of mag-

nitude of the potential outliers of computed image-based integrity metrics. Additional

geometry studies also reveal the impact on integrity when an additional pixel pair is added

to the navigation solution. The results prove counterintuitive, in that the additional mea-

surement does not improve integrity in all cases. A detailed comparative evaluation is

done in a GNSS scenario proving that, although not as common an occurrence, a similar

result is indeed possible. This outcome highlights another difference between integrity for

GNSS versus image-based systems. A key result of this analysis on the impact of geom-

etry is in showing that the overall performance of an image-based system is potentially

improved by using the integrity framework to focus measurement selection in regions that

enhance integrity.

Finally, a brief investigation into the impact of error in the nominal position used

for linearization, with respect to the image-based integrity metric shows that in the cases

studied, the metric exhibits linear or approximately linear properties across a ±6σ range
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of potential position error. Although a similar investigation regarding attitude is not com-

pleted, rough approximations describe the possible impact as a function of range from

target.

6.2 Future Work

This research effort establishes a rigorous foundation for image-based navigation

system integrity. As previously mentioned, the advent of GNSS integrity spawned new

research efforts for more than twenty years, and, similarly, there are many opportunities in

future work to advance the state-of-the-art presented in this dissertation. To build the initial

framework, a number of constraints were put in place that can be eventually loosened as

more research is done in this area. These constraints and potential research avenues are

described in the following paragraphs detailing future work possibilities.

The research has clearly defined performance in conjunction with geometry screen-

ing and evaluation against a threshold based on the probability of false alarm, focusing on

the deterministic case assumed to be resultant of the expected value of the measurement

model under biased and non-biased measurement conditions. Future work could extend

these results to the non-deterministic condition, where an adjustment to the performance

metric scale must be considered to account for the distribution of added noise. In the

GNSS case this is based on a second integrity parameter, the probability of missed detec-

tion, the formulation of which is already described in this dissertation for a chi-square test

statistic. Conceptually, this moves to replacement of the TD parameter in the HPETD

metric with a new bias term derived based on the non-deterministic scenario and required

probability of missed detection. This step effectively drives the “worst-case” result up the

new slope to a place where both the probability of false alarm and probability of missed

detection are met simultaneously. Additional future work opportunities exist in incorpo-

rating prior failure probabilities (feature matching probabilities), when known, into the

equations.
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Although a specific statistical distribution is not yet identified to fully characterize

the histogram data reflected in this research for random geometries, a number of interest-

ing empirical trends are shown observed in terms of mode and extreme values. These ob-

servations are expected to prove useful in the continuing development of an image-based

integrity framework. These results serve as a jumping off point for further investigations

and statistical analysis in advancing the image-based navigation integrity framework, to

include study of non-deterministic scenarios. Characterizing the probability density func-

tion of the image-based integrity metric for the random geometries could lead to the ability

to predict in advance the integrity limits under anticipated flight profiles.

In order to limit variability while establishing a baseline, the targets observed in

an image are assumed to have known locations. This assumption is consistent with the

research goal in tailoring toward an air-to-air refueling scenario where points of interest

could be known relative to a fixed location in a lead aircraft. However, future work could

investigate the impact on image-based integrity when target locations are not definitively

known, and have to be estimated. As discussed in the previous chapter, there are poten-

tial problems with linearization error when introducing target estimates into the equation,

which may be another extension. With regard to linearization error, a full evaluation re-

garding attitude remains an opportunity for future work as well.

The current research is based on a single pair of biased image-based measurements

(extending the single element failure assumption). As the number of failures grow it be-

comes increasingly difficult to associate error influence to specific measurements. There is

an opportunity for future research to extend the single pair failure assumption to a multiple

pair failure condition. The later assumption would require specific methods for trying to

identify the bad measurement sources, likely requiring decision tree analysis and extensive

combinatorial mathematics.

Although this research ultimately focuses an epoch-by-epoch least-squares approach

in image-based navigation, earlier chapters in this dissertation reviewed Extended Kalman

Filter (EKF) approaches to GNSS/INS integrity. There exists an opportunity for future
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work in applying concepts developed in this dissertation to a filtered approach and also use

resources developed by [119] and modified in this research effort. The Extended Kalman

Filter models are practical for the first investigations into an image-based integrity frame-

work because they are consistent with a least-squares approach taken in RAIM processes.

However, based on limitations of the EKF described by [119], a future research direction

may include the application of image-based integrity in a particle, or equivalent, filter. It

must be said that this is anticipated to be a extremely complicated transition, however.

6.3 Summary

The advantages to image-based navigation are many, including improved interfer-

ence immunity and reduced detectability of the user, in addition to advances in technology

making the camera and image-processing equipment potentially very small and less ex-

pensive than ever before. Previous research efforts described in earlier chapters show the

feasibility of image-based approaches and describe reasonable levels of accuracy, on the

order of meters in some cases. However, now that this technology is envisioned for safety

critical operations, there is a requirement to assure the correctness of the navigation so-

lution. This research has moved the effort for assured navigation a step forward, but, as

described in the previous paragraphs, there is still work to be done.
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